任永建, 赖安伟, 高庆先. 基于数值模拟的区域大气环境研究[J]. 科技导报, 2008, 26(19): 31-36. Ren Yongjian, Lai Anwei, Gao Qingxian. Regional air environment study based on numerical simulation[J]. Science & Technology Review, 2008, 26(19): 31-36.
[2]
上官志洪, 张启明, 陶云良. 内陆核电厂冷却塔的环境影响预测计算[J]. 辐射防护, 2009, 29(4): 211-218. Shangguan Zhihong, Zhang Qiming, Tao Yunliang. Cooling tower environmental impact prediction at inland nuclear power plant[J]. Radiation Protection, 2009, 29(4): 211-218.
[3]
国家核安全局. HAD101/02核电厂厂址选择的大气弥散问题[R]//核安全导则汇编. 北京: 中国法制出版社, 1998. National Nuclear Safety Administration. HAD101/02 Atmospheric dispersion on the site selection of nuclear power plant[S]//Nuclear Safety Guide Assembly. Beijing: China Legal Publishing House, 1998.
[4]
郭栋鹏, 姚仁太, 乔清党, 等. 核电厂冷却塔水汽扩散影响因素的分析[J]. 空气动力学学报, 2011, 29(2): 240-247. Guo Dongpeng, Yao Rentai, Qiao Qingdang, et al. The influencing factors analysis of water vapor diffusion regulation of the NPP's cooling tower[J]. Acta Aerodynamica Sinica, 2011, 29(2): 240-247.
[5]
Bornoff R B, Mokhtarzadeh-Dehghan M R. A numerical study of interacting buoyant cooling-tower plumes[J]. Atmospheric Environment, 2001, 35(3): 589-598.
[6]
Meroney R N. CFD prediction of cooling tower drift[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(6): 463-490.
[7]
王炫. 基于CFD模型的内陆核电厂厂区流场模拟[J]. 气象与环境学报, 2012, 28(3): 54-60. Wang Xuan. Wind field simulation in an inland nuclear power plant based on a CFD model[J]. Journal of Meteorology and Environment, 2012, 28(3): 54-60.
[8]
Hanna S R. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant[J]. Atmospheric Environment (1967), 1976, 10(12): 1043-1052.
[9]
LaVerne M E. Oak Ridge fog and drift code (ORFAD) user's manual[R]. Oak Ridge, TN: Oak Ridge National Labortatory, 1977.
[10]
Moore R D. The KUMULUS model for Plume and Drift Deposition Calculations for Indian Point Unit No. 2[R]. Knoxville, TN: Environmental Systems Corporation, 1977: 189-210.
[11]
Fuchs H, Hofman W. A refined method to calculate the shadowing by cooling tower plumes[C]//Proceeding of IAHR Cooling Tower Workshop, San Francisco, USA, September 22-25, 1980.
[12]
Carhart R A, Policastro A J. A second-generation model for cooling tower plume rise and dispersion[J]. Atmospheric Environment, 1991, 25 (8): 1559-1576.
[13]
US Nuclear Regulatory Commission. Standard review plans for environment reviews for nuclear power plant: Environmental standard review plans (NUREG-1555) [S]. Washington DC Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission, 2000.
[14]
Wigley T M L, Slawson P R. The effect of atmospheric conditions on the length of visible cooling tower plumes[J]. Atmospheric Environment, 1975, 9(4): 437-445.
[15]
Lucas M, Martinez P J, Ruiz J, et al. On the influence of psychrometric ambient conditions on cooling tower drift deposition[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 594-604.
[16]
Electric Power Research Institute. SACTI user's manuai: Cooling tower plume prediction code[R]. California: Electric Power Research Institute, 1987.
[17]
Policastro A J, Dunn W E, Carhart R A. A model for seasonal and annual cooling tower impacts[J]. Atmospheric Environment, 1994, 28(3): 379-395.
[18]
Carhart R A, Policastro A J, Dunn W E. An improved method for predicting seasonal and annual shadowing from cooling tower plumes[J]. Atmospheric Environment, 1992, 26 (15): 2845-2852.
[19]
王炫, 杜风雷. SACTI模型在核电厂大型自然通风冷却塔对局地环境影响预测评价中的应用[J]. 辐射防护, 2013, 33(4): 199-205. Wang Xuan, Du Fenglei. Application of SACTI model in environmental impact prediction and assessment of NPP's large scale natural draft cooling tower[J]. Radiation Protection, 2013, 33(4): 199-205.
[20]
郭栋鹏, 姚仁太. 核电厂冷却塔水汽抬升与液滴沉降规律数值模拟技术分析[J]. 辐射防护, 2010, 30(2): 102-107. Guo Dongpeng, Yao Rentai. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower[J]. Radiation Protection, 2010, 30(2): 102-107.