全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

出生氧化应激及其对抗氧化系统的影响

DOI: 10.3981/j.issn.1000-7857.2014.14.013, PP. 79-83

Keywords: 出生过程,氧化应激,抗氧化系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化应激指机体内氧化与抗氧化作用失衡,倾向于氧化状态。大量研究证实,哺乳动物出生过程中,由子宫内到子宫外所受到的如氧气等环境变化及其他一些刺激,导致新生婴儿体内产生大量的氧活性分子(ROS),从而破坏机体氧化-抗氧化平衡。由于新生婴儿机体抗氧化系统非常薄弱,不能够及时清除过量的ROS,从而造成出生氧化损伤。本文综述出生氧化应激及新生婴儿抗氧化系统的发育研究进展。

References

[1]  Aktan I, Dunkel B, Cunningham F M. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils[J]. Veterinary Immunology and Immunopathology, 2013, 152 (3/4): 209-217.
[2]  Yin J, Ren W K, Wu X S, et al. Oxidative stress-mediated signaling pathways: A review[J]. Journal of Food Agriculture & Environment, 2013, 11(2): 132-139.
[3]  Muller D P. Free radical problems of the newborn[J]. Proceedings of the Nutrition Society, 1987, 46(1): 69-75.
[4]  Friel J K, Friesen R W, Harding S V, et al. Evidence of oxidative stress in full-term healthy infants[J]. Pediatric Research, 2004, 56(6): 878-882.
[5]  Escobar J, Cubells E, Enomoto M, et al. Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups[J]. Redox Biology, 2013, 1(1): 297-303.
[6]  Kirimi E, Peker E, Tuncer O, et al. Increased serum malondialdehyde level in neonates with hypoxic-ischaemic encephalopathy: Prediction of disease severity[J]. Journal of International Medical Research, 2010, 38 (1): 220-226.
[7]  Weinberger B, Anwar M, Henien S, et al. Association of lipid peroxidation with antenatal betamethasone and oxygen radial disorders in preterm infants[J]. Biology of the Neonate, 2004, 85(2): 121-127.
[8]  Schrader M, Fahimi H D. Peroxisomes and oxidative stress[J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1763(12): 1755-1766.
[9]  Klaunig J E, Kamendulis L M, Hocevar B A. Oxidative stress and oxidative damage in carcinogenesis[J]. Toxicologic Pathology, 2010, 38 (1): 96-109.
[10]  Sozer V, Korkmaz G G, Konukoglu D, et al. Effects of peritoneal-and hemodialysis on levels of plasma protein and lipid oxidation markers in diabetic patients[J]. Minerva Medica, 2013, 104(1): 75-84.
[11]  Sureda A, Ferrer M D, Mestre A, et al. Prevention of neutrophil protein oxidation with vitamins C and e diet supplementation without affecting the adaptive response to exercise[J]. International Journal of Sport Nutrition and Exercise Metabolism, 2013, 23(1): 31-39.
[12]  Yin J, Ren W, Liu G, et al. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radical Research, 2013, 47(12): 1027-1035.
[13]  Yin J, Wu M M, Xiao H, et al. Development of an antioxidant system after early weaning in piglets[J]. Journal of Animal Science, 2013, 92(2): 612-619.
[14]  Lu A L, Li X, Gu Y, et al. Repair of oxidative DNA damage: mechanisms and functions[J]. Cell Biochemistry and Biophysics, 2001, 35(2):141-170.
[15]  Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006, 160(1):1-40.
[16]  Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist[J]. Biochemical Pharmacology, 2003, 66(8): 1499-1503.
[17]  Nur E, Verwijs M, de Waart D R, et al. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes[J]. Biochimica et Biophysica Acta-Biomembranes, 2011, 1812(11): 1412-1417.
[18]  Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry &Cell Biology, 2007, 39(1): 44-84.
[19]  Montero D, Walther G, Stehouwer C D, et al. Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: Asystematic review and meta-analysis of randomized controlled trials[J]. Obesity Reviews, 2014, 15(2): 107-116.
[20]  Mao G, Zou Y, Feng W, et al. Extraction, preliminary characterization and antioxidant activity of Se-enriched Maitake polysaccharide[J]. Carbohydrate Polymers, 2014, 101: 213-219.
[21]  Victoria F N, Martinez D M, Castro M, et al. Antioxidant properties of (R)-Se-aryl thiazolidine-4-carboselenoate[J]. Chemico-Biological Interactions, 2013, 205(2): 100-107.
[22]  BlokhinaO,VirolainenE, FagerstedtKV.Antioxidants,oxidative damage and oxygen deprivation stress: A review[J]. Annals of Botany, 2003, 91 (2): 179-194.
[23]  McCord J M, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055.
[24]  Matsuyama D, Kawahara K. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth[J]. Basic Research in Cardiology, 2011, 106(5): 815-828.
[25]  Sutherland M R, Bertagnolli M, Lukaszewski M A, et al. Preterm birth and hypertension risk: The oxidative stress paradigm[J]. Hypertension, 2014, 63(1): 12-18.
[26]  Gill R S, Lee T F, Liu J Q, et al. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxiareoxygenated newborn piglets[J]. PLoS One, 2012, 7(7): e40471.
[27]  Robles R, Palomino N, Robles A. Oxidative stress in the neonate[J]. Early Human Development, 2001, 65(S1): S75-S81.
[28]  Gulbayzar S, Arica V, Hatipoglu S, et al. Malondialdehyde level in the cord blood of newborn infants[J]. Iranian Journal of Pediatrics, 2011, 21 (3): 313-319.
[29]  Gonzalez M M, Madrid R, Arahuetes R M.P hysiological changes in antioxidant defences in fetal and neonatal rat liver[J]. Reproduction Fertility and Development, 1995, 7(5): 1375-1380.
[30]  Granot E, Golan D, Rivkin L, et al. Oxidative stress in healthy breast fed versus formula fed infants[J]. Nutrition Research, 1999,19(6): 869-879.
[31]  Li W, Kong A N. Molecular mechanisms of Nrf2-mediated antioxidant response[J]. Molecular Carcinogenesis, 2009, 48(2): 91-104.
[32]  Sun Z, Wu T, Zhao F, et al. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response[J]. Molecular and Cellular Biology, 2011, 31(9): 1800-1811.
[33]  Dias I H, riffiths H R. Oxidative stress in diabetes-circulating advanced glycation end products, lipid oxidation and vascular disease[J]. Annals of Clinical Biochemistry, 2014, 51(Pt 2): 125-127.
[34]  Vermorken A J, Zhu J, Andres E. Obesity and colorectal cancer risk: The role of oxidative stress[J]. Gut, 2014, 63(3): 529-530.
[35]  Derbre F, Gratas-Delamarche A, Gomez-Cabrera M C, et al. Inactivityinduced oxidative stress: A central role in age-related sarcopenia?[J]. European Journal of Sport Science, 2014, 14(S1): S98-S108.
[36]  Weber D, Stuetz W, Bernhard W, et al. Oxidative stress markers and micronutrients in maternal and cord blood in relation to neonatal outcome[J]. European Journal of Clinical Nutrition, 2014, 68(2): 215-222.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133