全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

当前小麦研究的国际热点

DOI: 10.3981/j.issn.1000-7857.2014.13.011, PP. 64-69

Keywords: 小麦,产量潜力,种质资源,非生物胁迫,微量营养

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了当前国际上小麦研究的几个热点,包括小麦产量潜力的研究、优异种质资源的利用、气候变化与小麦生产、小麦抗非生物胁迫、小麦微量营养和小麦综合管理。分析表明,未来产量的提高应主要依靠生物产量的增长,在此基础上尽可能维持或增加收获指数;小麦种质资源丰富,含大量优异基因,可用于提高植株抗性和改善品质;全球变暖会威胁粮食安全,需提高小麦生产对气候变化的适应能力;提高小麦耐逆机能,除重视利用一般的生理机制外,需要更加突出地重视利用贮藏物质运转、持绿性、非叶光合机能、根系构型等重要性状;提高籽粒微量营养素含量可通过施肥、常规育种和转基因技术实现;实施小麦综合管理可克服小麦生产中的多个限制因子,通过发挥技术和要素的互作协同效应,实现小麦高产高效。

References

[1]  Rosegrant M W, Agcaoili-Sombilla M, Perez N D. Global food projections to 2020: Implications for investment[M]. Washington, DC: Diane Publishing, 1995.
[2]  Evans L T. Crop evolution, adaptation and yield[M]. Cambridge, UK: Cambridge University Press, 1993: 169-267.
[3]  Fischer R A. Wheat physiology at CIMMYT and raising the yield plateau[C]// Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico: CIMMYT, 1996.
[4]  Reynolds M P, Ortiz-Monasterio J L, McNab A. Application of physiology in wheat breeding[M]. Mexico: CIMMYT, 2001.
[5]  Siddique K H M, Kirby E J M, Perry M W. Ear: Stem ratio in old and modern wheat varieties; Relationship with improvement in number of grains per ear and yield[J]. Field Crops Research, 1989, 21: 59-78.
[6]  Shearman V J, Sylvester-Bradley R, Scott R K, et al. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science, 2005, 45: 175-185.
[7]  Ku M S B, Kano-Murakami Y, Matsuoka M. Evolution and expression of C4 photosynthesis gene[J]. Plant Physiology, 1996, 111: 949-957.
[8]  Araus J L, Amaro T, Casadesús J, et al. Relationships between ash content, carbon isotope discrimination and yield in durum wheat[J]. Australian Journal of Plant Physiology, 1998, 25(7): 835-842.
[9]  Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of nonleaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001, 39: 239-244.
[10]  Barnabas B, Jager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant Cell and Environment, 2008, 31: 11-38.
[11]  Gonzalez F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth[J]. Journal of Experimental Botany, 2011, 62(14): 4889-4901.
[12]  Slafer G A, Araus J L, Royo C, et al. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Annals of Applied Biology, 2005, 146: 61-70.
[13]  Abbate P E, Andrade D H, Lazaro L, et al. Grain yield in recent Argentine wheat cultivars[J]. Crop Science, 1998, 38: 1203-1209.
[14]  Bancal P. Positive contribution of stem growth to grain number per spike in wheat[J]. Field Crops Research, 2008, 105: 27-39.
[15]  Acreche M, Briceno-Felix G, Martín Sanchez J A, et al. Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain[J]. European Journal of Agronomy, 2008, 28: 162-170.
[16]  Reynolds M, Bonnett D, Chapman S C, et al. Raising yield potential of wheat. I. Overview of a consortium approach and breeding sragegies[J]. Journal of Experimental Botany, 2011, 62(2): 439-452.
[17]  B?rner A, Neumann K, Kobiljski B. Wheat genetic resources—How to exploit[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47: 43-48.
[18]  Saulescu N N, Ittu G, Ciuca M, et al. Transferring useful rye genes to wheat, using Triticale as a bridge[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47: 56-62.
[19]  Friebe B, Hatchett J H, Sears R G, et al. Transfer of Hessian fly resistance from "Chaupon" rye to hexaploid wheat via a 2BS/2Rl wheatrye chromosome translocation[J]. Theoretical and Applied Genetics, 1990, 79: 385-389.
[20]  Kim W, Johnson J W, Graybosch R A, et al. The effect of T1DL.1RS wheat-rye chromosomal translocation on agronomic performance and end-use quality of soft wheat[J]. Cereal Research Communications, 2003, 31: 301-308.
[21]  Xie W, Nevo E. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement[J]. Euphytica, 2008, 164: 603-614.
[22]  Braun H J, Atlin G, Payne T. Multi-location testing as a tool to identify plant response to global climate change[M]. Reynolds M P. Climate Change and Crop Production. Wallingford, UK: CABI Publishers, 2010: 115-138.
[23]  Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology, 2003, 30: 239-264.
[24]  Chaves M M. Crop resistance to abiotic stresses-mechanisms, traits and mitigation strategies[C]. 6th International Crop Science Congress, Brasil, August 6-10, 2012.
[25]  Zhang X Y, Pei D, Chen S Y. Root growth and soil water utilization of winter wheat in the North China Plain[J]. Hydrological Processes, 2004, 18(12): 2275-2287.
[26]  薛丽华, 张英华, 段俊杰, 等. 调亏灌溉下冬小麦根系分布与耗水的关系[J]. 麦类作物学报, 2010, 30(4): 693-697. Xue Lihua, Zhang Yinghua, Duan Junjie, et al. Relationship between root distribution and water consumption of winter wheat under regulated deficit irrigation[J]. Journal of Triticeae Crops, 2010, 30(4): 693-697.
[27]  Gewin V. Food: An underground revolution[J]. Nature, 2010, 466: 552-553.
[28]  Waines J G, Ehdaie B. Domestication and crop physiology: Roots of green-revolution wheat[J]. Annals of Botany, 2007, 100(5): 991-998.
[29]  Den Herder G, Van Isterdael G, Beeckman T, et al. The roots of a new green revolution[J]. Trends in Plant Science, 2010, 15(11): 600-607.
[30]  Oritiz-Monasterio I, Palacios-Rojas N, Meng E, et al. Enhancing the mineral and vitamin content of wheat and maize through plant breeding[J]. Journal of Cereal Science, 2007, 46: 293-307.
[31]  Hussain S, Maqsood M A, Rahmatullah. Increasing grain zinc and yield of wheat for the developing world: A review[J]. Emirates Journal of Food Agriculture, 2010, 22(5): 326-339.
[32]  Yilmaz A, Ekiz H, Torun B, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils[J]. Journal of Plant Nutrition, 1997, 20: 461-471.
[33]  SperottoRA,RicachenevskyFK,WaldowVdeA,etal.Ironbiofortification in rice: It's a long way to the top[J]. Plant Science, 2012, 190: 24-39.
[34]  Kobayashi T, Nakanishi H, Takahashi M, et al. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice[J]. Planta, 2001, 212: 864-871.
[35]  Ishimaru Y, Masuda H, Suzuki M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58: 2909-2915.
[36]  Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. Plant Journal, 2010, 62: 379-390.
[37]  Sperotto R A, Ricachenevsky F K, Duarte G L, et al. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor[J]. Planta, 2009, 230: 985-1002.
[38]  Kuwano M, Mimura T, Takaiwa F, et al. Generation of stable low phytic acid transgenic rice through antisense repression of the 1D-myoinositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter[J]. Plant Biotechnology Journal, 2009, 7: 96-105.
[39]  Scheeren P L, Caetano V. Co-evolution of breeding strategies and cropping systems for raising wheat yield potentials on stressful environments[C]. 6th International Crop Science Congress, Brasil, August 6-10, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133