全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

应力空间和应变空间的后继屈服面演化

DOI: 10.3981/j.issn.1000-7857.2014.07.004, PP. 33-38

Keywords: 滑移构元模型,应力空间,应变空间,后继屈服面演化,混合硬化

Full-Text   Cite this paper   Add to My Lib

Abstract:

屈服面的位置和形状直接影响材料塑性应变的确定。考虑滑移是晶体的主要塑性变形机制,介绍了晶体塑性理论的推广——滑移构元模型,研究了应力空间和应变空间的后继屈服面演化。给出了确定应力空间和应变空间屈服面的数值计算方法,提出一种考虑屈服面畸变变形的混合硬化假设,可以描述应力空间和应变空间后继屈服面的移动和畸变变形。通过计算1100-O铝在纯扭转和拉扭组合加载下(σ11-σ12)空间和(ε11-γ12)的后继屈服面演化,与已有实验结果吻合。研究结果表明,无论是在应力空间还是应变空间,后继屈服面“前凸后扁”的变形特征可基于滑移构元的潜在硬化和包氏效应来描述。

References

[1]  张泽华, 吕桂英. 塑性本构关系的实验研究[C]//塑性力学进展. 北京: 中国铁道出版社, 1988: 144-178. Zhang Zehua, Lü Guiying. The experimental study of plastic constitutive relations[C]//The advances in Plasticity. Beijing: China Railway Publishing House, 1988: 144-178.
[2]  Wu H C, Yeh W C. On the experimental determination of yield surfaces and some results of annealed 304 stainless steel[J]. International Journal of Plasticity, 1991, 7(8): 803-826.
[3]  Khan A S, Kazmi R, Pandey A, et al. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part I: A very low work hardening aluminum alloy (Al6061- T6511) [J]. International Journal of Plasticity, 2009, 25(9): 1611-1625.
[4]  Khan A S, Pandey A, Stoughton T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: A very high work hardening aluminum alloy (annealed 1100 Al) [J]. International Journal of Plasticity, 2010, 26(10): 1421-1431.
[5]  Khan A S, Pandey A, Stoughton T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: Yield surface in tension–tension stress space (Al 6061–T 6511 and annealed 1100 Al)[J]. International Journal of Plasticity, 2010, 26(10): 1432-1441.
[6]  Francois M. A plasticity model with yield surface distortion for non proportional loading[J]. International Journal of Plasticity, 2001, 17(5): 703-717.
[7]  Chiang D Y, Su K H, Liao C H. A study on subsequent yield surface based on the distributed- element model[J]. International Journal of Plasticity, 2002, 18(1): 51-70.
[8]  Wu H C. Effect of loading-path on the evolution of yield surface for anisotropic metals subjected to large pre-strain[J]. International Journal of Plasticity, 2003, 19(10): 1773-1800.
[9]  Yeh W C, Lin H Y. An endochronic model of yield surface accounting for deformation induced anisotropy[J]. International Journal of Plasticity, 2006, 22(1): 16-38.
[10]  Suprun A N. A constitutive model with three plastic constants: The description of anisotropic workhardening[J]. International Journal of Plasticity, 2006, 22(7): 1217-1233.
[11]  付强, 刘芳, 张晶, 等. 一种基于物理机制的后继屈服面演化模型[J]. 力学学报, 2010, 42(5): 880-888. Fu Qiang, Liu Fang, Zhang Jing, et al. A physically motivated model for the evolution of subsequent yield surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 880-888.
[12]  Naghdi P M, Trapp J A. The significance of formulating plasticity theory with reference to loading surfaces in strain space[J]. International Journal of Engineering Science, 1975, 13(9–10): 785- 797.
[13]  Casey J, Naghdi P M. A prescription for the identification of finite plastic strain[J]. International Journal of Engineering Science, 1992, 30: 1257-1278.
[14]  Brown A A, Casey J, Nikkel D J. Experiments conducted in the context of the strain-space formulation of plasticity[J]. International Journal of Plasticity, 2003, 19(11): 1965-2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133