全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

微波催化氧化降解结晶紫废水及其氧化机理

DOI: 10.3981/j.issn.1000-7857.2015.07.011, PP. 67-73

Keywords: 微波,催化氧化,结晶紫,CuO/AC,微波辐照,羟基自由基

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对工业染料废水处理难的问题,采用微波催化氧化降解(MCOD)方法,不添加氧化剂处理结晶紫模拟废水。首先用浸渍法制备CuO/AC催化剂,采用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)技术对催化剂样品进行表征。考查CuO担载量及催化剂用量、微波功率、微波反应时间、催化剂用量、反应液初始质量浓度等因素对结晶紫去除率的影响。结果表明,在微波功率400W条件下,使用0.6gCuO担载量为质量分数0.8%的微波催化剂CuO/AC,处理100mL初始质量浓度为100mg/L的结晶紫模拟废水6min,降解率可达99.48%,相应有机碳去除率为94.01%。通过添加不同氧化基团清除剂的实验发现,反应过程中产生了羟基自由基(·OH)。这种微波催化氧化降解(MCOD)新方法可高效处理结晶紫模拟废水。

References

[1]  Chen C C, Liao H J, Cheng C Y, et al. Biodegradation of crystal violet by Pseudomonas putida[J]. Biotechnology Letters, 2007, 29(3): 391-396.
[2]  周凤妃, 程迎, 甘莉, 等. Cu(II)对Burkholderia vietnamiensis C09V 生物/降解废水中结晶紫的影响[J]. 福建师范大学学报: 自然科学版, 2013, 29(5): 66-70. Zhou Fengfei, Cheng Ying, Gan Li, et al. Effect of Cu(II) on the bioremoval of crystal violetby burkholderia vietnamiensis C09V[J]. Journal of Fujian Normal University: Natural Science Edition, 2013, 29 (5): 66-70.
[3]  张敬华, 陈慧娟. 改性麦壳对结晶紫的吸附作用研究[J]. 化工新型材料, 2013, 61(7): 187-189. Zhang Jinghua, Chen Huijuan. Study on adsorption of crystal violet by modified wheat shell husk[J]. New Chemical Materials, 2013, 61(7): 187-189.
[4]  苗慧, 张慧, 张文保, 等. 钨掺杂氧化钦纳米管光催化降解结晶紫染料的性能[J]. 光谱实验室, 2013, 30(2): 599-603. Miao Hui, Zhang Hui, Zhang Wenbao, et al. Research on the photocatalytic degradation of crystal violet dye by doping tungsten titanium oxide nanotubes[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 599-603.
[5]  杨海洋, 郭然, 齐蒙蒙, 等. 超声波辐照和臭氧氧化协同降解废水中的结晶紫[J]. 化学研究, 2013, 24(3): 269-273. Yang Haiyang, Guo Ran, Qi Mengmeng, et al. Degradation of crystal violet in wastewater under ultrasonic wave irradiation combined with ozone oxidizing[J]. Chemical Research, 2013, 24(3): 269-273.
[6]  张国宇, 王鹏, 陈小英, 等. 三相流化床中微波诱导氧化处理含酚废水研究[J]. 哈尔滨工业大学学报, 2004, 36(6): 708-711. Zhang Guoyu, Wang Peng, Chen Xiaoying, et al. Phenol removal by microwave induced oxidation process in three-phase fluidized-bed reactor[J]. Journal of Harbin Institute of Technology, 2004, 36(6): 708- 711.
[7]  吕敏春, 严莲荷, 王剑虹, 等. 光、微波、热催化氧化效果的比较[J]. 工业水处, 2003, 23(8): 36-38. Lü Minchun, Yan Lianhe, Wang Jianhong, et al. Comparison of photocatalysis oxidation, microwave catalysis oxidation and thermocatalysis oxidation[J]. Industrial Water Treatment, 2003, 23(8): 36-38.
[8]  Ai Z H, Yang P, Lu X H. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes[J]. Chemosphere, 2005, 60(6): 824-827.
[9]  李莉, 张秀芬, 马禹, 等. 微波增强H3PW12O40/TiO2光催化降解染料和水杨酸的研究[J]. 分子催化, 2008, 22(6): 532-537. Li Li, Zhang Xiufen, Ma Yu, et al. Microwave enhanced H3PW12O40/ TiO2 photo-catalytic degradation of dye and salicylic acid[J]. Journal of Molecular Catalysis A: Chemical, 2008, 22(6): 532-537.
[10]  Bi X Y, Peng W, Jiao C Y. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process[J]. Journal of Hazardous Materials, 2009, 168(2): 895-900.
[11]  Hong J, Yuan N N, Wang Y N. Efficient degradation of Rhodamine B in microwave- H2O2 system at alkaline pH[J]. Chemical Engineering Journal, 2012, 191: 364-368.
[12]  赵德明, 李敏, 张建庭, 等. 微波强化臭氧氧化降解苯酚水溶液[J]. 化工学报, 2009, 60(12): 3137-3141. Zhao Deming, Li Min, Zhang Jianting, et al. Degradation of phenol aqueous solution by microwave enhanced ozone oxidation[J]. Chemical Engineering Journal, 2009, 60(12): 3137-3141.
[13]  袁茂彪, 马雄风, 王书萍, 等. 絮凝-微波辐射-Fenton试剂氧化法深度处理焦化废水[J]. 化工环保, 2013, 33(6): 513-516. Yuan Maobiao, Ma Xiongfeng, Wang Shuping, et al. Aadvanced treatment of coking wastewater by flocculation-microwave irradiationfenton reagent oxidation[J]. Environmental Protection of Chemical Industry, 2013, 33(6): 513-516.
[14]  Ju Y M, Yang S G, Ding Y C. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: Intermediates and degradation mechanism[J]. Journal of Hazardous Materials, 2009, 171 (1): 123-132.
[15]  Li L, Zhang X L, Zhang W Z. Microwave-assisted synthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes[J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2014, 457: 134-141.
[16]  He H, Yang S G, Yu K. Microwave induced catalytic degradation of crystal violet in nanonickel dioxide suspensions[J]. Journal of Hazardous Materials, 2010, 173(1): 393-400.
[17]  王文亮, 李东升, 王振军, 等. CuO超细粉体的形貌与红外特性研究[J]. 无机化学学报, 2002, 18(8): 823-826. Wang Wenliang, Li Dongsheng, Wang Zhenjun, et al. Morphology and infrared characteristics of ultrafine powder CuO[J]. Chinese Journal of Inorganic Chemistry, 2002, 18(8): 823-826.
[18]  刘娟, 焦华, 蔡秀琴. CuO纳米球制备及性质研究[J]. 渭南师范学院学报, 2010, 25(2): 38-41. Liu Juan, Jiao Hua, Cai Xiuqin. Preparation and properties of CuO nanoparticles[J]. Weinan Teachers College, 2010, 25(2): 38-41.
[19]  刘成雁, 李在元, 刘海英, 等. 沉淀转化法制备CuO纳米纤维[J]. 中国有色冶金, 2006, 6(3): 34-36. Liu Chengyan, Li Zaiyuan, Liu Haiying, et al. Preparation of CuO precipitation conversion nanofibers[J]. China Nonferrous Metallurgy, 2006, 6(3): 34-36.
[20]  Zhao J H, Liu Z Y, Sun D K. TPO-TPD study of an activated carbonsupported copper catalyst-sorbent used for catalytic dry oxidation of phenol[J]. Journal of Catalysis, 2004, 227(2): 297-2303.
[21]  赵江红, 刘振宇. 金属担载量对CuO/AC干法催化氧化苯酚的影响[J]. 燃料化学学报, 2006, 34(1): 75-80. Zhao Jianghong, Liu Zhenyu. Effect of metal loadings on catalytic dry oxidation of phenol by CuO/AC catalyst-sorbents[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1): 75-80.
[22]  Guo Y W, Cheng C P, Wang J, et al. Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes[J]. Journal of Hazardous Materials, 2011, 192(2): 786-793.
[23]  Quan X, Zhang Y B, Chen S. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances[J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1): 216-222.
[24]  Zhang Z H, Xu Y, Ma X P. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano- TiO2- supported activated carbon (supported- TiO2/AC/MW) [J]. Journal of Hazardous Materials, 2012, 209/210: 271-277.
[25]  Lin L, Yuan S, Chen J. Removal of ammonia nitrogen in wastewater by microwave radiation[J]. Journal of Hazardous Materials, 2009, 161: 1063-1068.
[26]  Wang X, Zhang T, Xu C. Microwave effects on the selective reduction of NO by CH4 over an In- Fe2O3/HZSM- 5 catalyst[J]. Chemical Communications, 2000(4): 279-280.
[27]  Tang J W, Zhang T, Liang Dm, et al. Microwave discharge-assisted catalytic conversion of NO to N2[J]. Chemical Communications, 2000 (19): 1861-1862.
[28]  Zhang Z, Jiatieli J, Liu D, et al. Microwave induced degradation of parathion in the presence of supported anatase- and rutile- TiO2/AC and comparison of their catalytic activity[J]. Chemical Engineering Journal, 2013, 231: 84-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133