全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

石墨烯在强化传热领域的研究进展

DOI: 10.3981/j.issn.1000-7857.2015.05.005, PP. 39-45

Keywords: 石墨烯,热导率,纳米流体,热界面材料,高导热复合高分子材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯是一种单原子层厚度的二维平面碳纳米材料,具有超高的载流子迁移率、高热导率等特性。本文综述目前石墨烯在强化传热领域的研究进展,包括石墨烯热导率的测试方法,以及石墨烯在纳米流体、热界面材料、高导热复合高分子材料方面的应用,并对未来石墨烯的研究方向进行展望。

References

[1]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2]  Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[3]  Saito K, Nakamura J, Natori A. Ballistic thermal conductance of a graphene sheet[J]. Physical Review B, 2007, 76(11): 115409.
[4]  Ghosh S, Bao W, Subrina S, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.
[5]  Chen S, Moore A L, Cai W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments[J]. ACS Nano, 2010, 5(1): 321-328.
[6]  Park S S, Kim N J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1911-1915.
[7]  Goyal V, Balandin A A. Thermal properties of the hybrid graphenemetelnano-micro-composites:Applicationsinthermalinterface materials[J]. Applied Physics Letters, 2012, 100(7): 073113.
[8]  Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Communications, 2012, 152(15): 1311-1340.
[9]  Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49: 793-803.
[10]  Yu A P, Ramesh P, Sun X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20: 4740-4744.
[11]  Im H, Kim J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15): 5429-5440.
[12]  Huang X, Zhi C, Jiang P. Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J]. Journal of Physics Chemistry C, 2012, 116(44): 23812-23820.
[13]  于伟, 谢华清, 陈立飞, 等. 高导热含石墨烯纳米片尼龙6复合材料[J]. 工程热物理学报, 2013, 34(9): 1749-1751. Yu Wei, Xie Huaqing, Chen Lifei, et al. The high thermal conductivity of graphene nanoplatelets with nylon 6 composites[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1749-1751.
[14]  Xie S H, Liu Y Y, Li J Y. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes[J]. Applied Physics Letters, 2008, 92(24): 243121.
[15]  Song S H, Park K H, Kim B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent fictionalization[J]. Advanced Materials, 2013, 25(5): 732-737.
[16]  Teng C, Ma C, Lu C, et al. Thermal conductivity and structure of noncovalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49 (15): 5107-5116.
[17]  YangX,ZhanY,YangJ,etal.Synergeticeffectofcyanogens functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile) [J]. Journal of Polymer Research, 2011, 19: 9806.
[18]  Yu W, Xie H Q, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina [J]. International Journal of Thermal Science, 2015, 91: 76-82.
[19]  Lee J U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J]. Physical Review B, 2011, 83(8): 081419.
[20]  Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 2010, 10(5): 1645-1651.
[21]  Schwamb T, Burg B R, Schirmer N C, et al. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures[J]. Nanotechnology, 2009, 20(40): 405704.
[22]  Xie H, Chen L, Yu W, et al. Temperature dependent thermal conductivity of a free-standing graphene nanoribbon[J]. Applied Physics Letters, 2013, 102(11): 111911.
[23]  Yu W, Liu G, Wang J, et al. Significantly reduced anisotropic phonon thermal transport in graphene oxide films[J]. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2013, 43(9): 1197-1205.
[24]  Yu W, Xie H, Li F, et al. Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions[J]. Applied Physics Letters, 2013, 103(14): 141913.
[25]  Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticales[J]. ASME-Publications-Fed, 1995, 231: 99-106.
[26]  Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous twocomponent systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.
[27]  Yu W, Xie H Q, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21(5): 055705.
[28]  Yu W, Xie H Q, Wang X, et al. Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide[J]. Nanoscale Research Letters, 2011, 6(1): 1-7.
[29]  YuW,XieHQ,ChenW.Experimentalinvestigationonthermalconductivity of nanofluids containing graphene oxide nanosheets[J]. Journal of Applied Physics, 2010, 107(9): 094317.
[30]  YuW,XieHQ,WangX,etal.Significantthermalconductivityenhancement for nanofluids containing graphene nanosheets[J]. Physics Letters A, 2011, 375(10): 1323-1328.
[31]  Park S D, Lee S W, Kang S, et al. Pool boiling CHF enhancement by grapgene-oxide nanofluid under nuclear coolant chemical environments[J]. Nuclear Engineering and Design, 2012, 252: 184-191.
[32]  Mehrali M, Sadeghinezhad E, Latibari S T, et al. Investidation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9(1): 15.
[33]  Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2014, 53:136-141.
[34]  Li X, Chen Y, Mo S, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid[J]. Thermochimica Acta, 2014, 595: 6-10.
[35]  Lee G, Rhee C K. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation[J]. Journal of Materials Science, 2014, 49(4): 1506-1511.
[36]  Mehrali M, Sadeghinezhad E, Latibari S T, et al. Preparation, characterization, viscosity, and thermal conductivity of nitrongen-doped graphene aqueous nanofluids[J]. Journal of Materials Science, 2014, 49 (20): 7156-7171.
[37]  Sudeep P M, Taha-Tijerina J, Ajayan P M, et al. Nanofluids based on fluorinated graphene oxide for efficient thermal management[J]. RSC Advances, 2014, 4(47): 24887-24892.
[38]  Prasher R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE, 2006, 94(8): 1571-1586.
[39]  Yu W, Xie H, Chen L. Graphene based silicone thermal greases[J]. Physics Letters A, 2014, 378(3): 207-211.
[40]  Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133