全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

石墨烯在光电器件中的应用

DOI: 10.3981/j.issn.1000-7857.2015.05.004, PP. 34-38

Keywords: 石墨烯,太阳能电池,有机发光二级管,场致发射器件

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了近年来石墨烯在太阳能电池、有机发光二极管以及场致发射器件方面的应用研究。石墨烯是碳的同素异形体的一种,是二维的薄膜材料,具有独特的导电特性及机械弯曲性能,可以作为太阳能电池、有机发光器件的柔性电极;石墨烯与有机聚合物材料复合可以形成大的给体受体界面,有利于太阳能电池中激子的扩散速率、载流子迁移率的提高,可以作为有机太阳能电池的电子受体材料;石墨烯具有一维尖锐的刀口状边缘,具有大的电场增强系数,同时由于石墨烯自身的良好导电能力,可以作为场致发射器件中的电子传导与电场发射材料。石墨烯在光电器件中应用的深入研究有望突破目前光电技术的发展瓶颈,是一个极具前景的新研究领域。

References

[1]  祝晓钊. 有机光电器件的界面调控与修饰[D]. 苏州: 苏州大学, 2013. Zhu Xiaozhao. Interface control and modification of organic optoelectronic devices[D]. Suzhou: Suzhou University, 2013.
[2]  Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2009, 4(1): 43-48.
[3]  Meyer J, Kidambi P R, Bayer B C, et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes[J/OL]. Scientific Reports, 2014[2014-12-29]. http://www.nature.com/srep/2014/140620/ srep05380/full /srep05380.html?WT.ec_id=SREP-639-20140624.
[4]  吴晓晓, 李福山, 吴薇, 等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔 性OLED器件[J]. 发光学报, 2014, 35(4): 486-490. Wu Xiaoxiao, Li Fushan, Wu Wei, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film[J]. Chinese Journal of Luminescence, 2014, 35(4): 486-490.
[5]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
[6]  Ferrari A C, Bonaccorso F, Falko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J/OL]. Nanoscale, 2014[2014-12-30]. http://pubs.rsc.org/en/ content/articlelanding/2014/nr/c4nr01600a.
[7]  Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[8]  Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-158.
[9]  朱宏伟, 徐志平, 谢丹, 等. 石墨烯——结构、制备方法与性能表征[M]. 北京: 清华大学出版社, 2011. Zhu Hongwei, Xu Zhiping, Xie Dan, et al. Graphene-structure, preparation methods and characterization[M]. Beijing: Tsinghua University Press, 2011.
[10]  邹鹏, 黄德欢. 石墨烯及其应用[J]. 科学, 2014, 66(1): 29-32. Zou Peng, Huang Dehuan. Graphene and its applications[J]. Science, 2014, 66(1): 29-32.
[11]  Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602.
[12]  Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3 (4): 206-209.
[13]  Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308-1308.
[14]  Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200.
[15]  Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
[16]  Bi H, Huang F, Liang J, et al. Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells[J]. Advanced Materials, 2011, 23 (28): 3202-3206.
[17]  Kasry A, Kuroda M A, Martyna G J, et al. Chemical doping of largearea stacked graphene films for use as transparent, conducting electrodes[J]. ACS Nano, 2010, 4(7): 3839-3844.
[18]  Lee W H, Suk J W, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic[J]. ACS Nano, 2012, 6(2): 1284-1290.
[19]  Zhang H, Lü X, Li Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2009, 4(1): 380-386.
[20]  Kim S R, Parvez M K, Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J]. Chemical Physics Letters, 2009, 483(1): 124-127.
[21]  Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.
[22]  Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2008, 10(10): 1555-1558.
[23]  Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices[J]. Applied Physics Letters, 2009, 95(6): 063302.
[24]  Liu Z, Li J, Sun Z H, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2011, 6(1): 810-818.
[25]  Park H, Howden R M, Barr M C, et al. Organic solar cells with graphene electrodes and vapor printed poly (3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. ACS Nano, 2012, 6(7): 6370-6377.
[26]  Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.
[27]  Yin B, Liu Q, Yang L, et al. Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1934-1938.
[28]  Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.
[29]  Liu Q, Liu Z, Zhang X, et al. Organic photovoltaic cells based on an acceptor of soluble graphene[J]. Applied Physics Letters, 2008, 92 (22): 223303.
[30]  Guo C X, Yang H B, Sheng Z M, et al. Layered graphene/quantum dots for photovoltaic devices[J]. Angewandte Chemie International Edition, 2010, 49(17): 3014-3017.
[31]  Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: Graphene[J]. Advanced Materials, 2008, 20 (20): 3924-3930.
[32]  Yu D, Park K, Durstock M, et al. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1113-1118.
[33]  Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.
[34]  Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2013, 14(2): 724-730.
[35]  Yang H B, Dong Y Q, Wang X, et al. Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1092-1099.
[36]  Yang H B, Dong Y Q, Wang X, et al. Graphene quantum dotsincorporated cathode buffer for improvement of inverted polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 214-218.
[37]  Gao P, Ding K, Wang Y, et al. Crystalline Si/graphene quantum dots heterojunction solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(10): 5164-5171.
[38]  Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to greenluminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780.
[39]  Kim J K, Park M J, Kim S J, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells[J]. ACS Nano, 2013, 7(8): 7207-7212.
[40]  Li F, Kou L, Chen W, et al. Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes[J]. NPG Asia Materials, 2013, 5(8): e60.
[41]  Li F, Lin Z, Zhang B, et al. Fabrication of flexible conductive graphene/Ag/Al-doped zinc oxide multilayer films for application in flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14 (9): 2139-2143.
[42]  郭颂, 杜晓刚,刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在 OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. Guo Song, Du Xiaogang, Liu Xiaoyun, et al. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Organic Electronics, 2013, 34(5): 595-599.
[43]  Zhai T, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection[J]. Chemical Society Reviews, 2011, 40(5): 2986-3004.
[44]  Ding J, Yan X, Li J, et al. Enhancement of field emission and photoluminescence properties of graphene-SnO2 composite nanostructures[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4299-4305.
[45]  李智军, 张晖, 薛河. 石墨烯纳米片及其场发射性能研究[J]. 化工新 型材料, 2010, 37(4): 1-3. Li Zhijun, Zhang Hui, Xue He. Graphene nanoflak (GNFs) and their electron emission[J]. New Chemical Materials, 2010, 37(4): 1-3.
[46]  Deng J H, Cheng L, Wang F J, et al. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21558-21566.
[47]  Sharma H, Agarwal D C, Sharma M, et al. Structure-modified stress dynamics and wetting characteristics of carbon nanotubes and multilayer graphene for electron field emission investigations[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12531-12540.
[48]  Wu C, Li F, Zhang Y, et al. Enhanced field emission performance of tetrapod-liked zinc oxide nanoneedles by coating with graphene oxide sheets[J]. Current Nano Science, 2012, 8(1): 23-25.
[49]  Wu C, Li F, Zhang Y, et al. A surface-conducted field emission device with suspended graphene cathodes[J]. Applied Surface Science, 2013, 273: 432-436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133