全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

基于石墨烯复合薄膜的等离激元传感研究进展

DOI: 10.3981/j.issn.1000-7857.2015.05.002, PP. 18-25

Keywords: 石墨烯,金属纳米粒子,表面增强拉曼散射,等离激元,传感

Full-Text   Cite this paper   Add to My Lib

Abstract:

做为由单层碳原子紧密堆积而成的六边形蜂窝状二维晶体,石墨烯具有高载流子迁移率、良好的生物兼容性和优异的化学稳定性。本文简要综述了石墨烯-金属纳米粒子复合薄膜在表面增强拉曼散射研究进展,以及石墨烯等离激元的激发方式和传感性能。在可见光波段,石墨烯和金属纳米粒子之间的耦合使复合薄膜具有强的光学吸收和局域电场增强,从而使复合薄膜可以作为高灵敏的表面增强拉曼基底。在中红外波段,除可以利用石墨烯微纳结构激发等离激元,还可以对介电基底进行微纳加工利用波导模式激发,使得石墨烯等离激元可能用于折射率传感。讨论了石墨烯基复合薄膜研究过程中面临的机遇和挑战,展望了其在表面增强拉曼和传感方面的应用前景。

References

[1]  Frank O, Vejpravova J, Holy V, et al. Interaction between graphene and copper substrate: The role of lattice orientation[J]. Carbon, 2014, 68: 440-451.
[2]  Hao Y, Bharathi M S, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.
[3]  Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surfaceenhanced raman scattering (SERS) sensing[J]. Nanoscale, 2014, 6(9): 4843-4851.
[4]  Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on n-layer graphenes[J]. Journal of the American Chemical Society, 2010, 132(3): 944-946.
[5]  Zhou H, Yu F, Chen M, et al. The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing[J]. Carbon, 2013, 52: 379-387.
[6]  Zhou H, Yu F, Yang H, et al. High-throughput thickness determination of n-layer graphenes via gold deposition[J]. Chemical Physics Letters, 2011, 518: 76-80.
[7]  Qiu C, Zhou H, Cao B, et al. Raman spectroscopy of morphologycontrolled deposition of Au on graphene[J]. Carbon, 2013, 59: 487-494.
[8]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[9]  Bunch J S, van der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[10]  Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J].ReviewsofModernPhysics,2009,81(1):109-162.
[11]  Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.
[12]  Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie-International Edition, 2009, 48(26): 4785-4787.
[13]  Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 2010, 18(14): 14395-14400.
[14]  Zhu X, Shi L, Schmidt M S, et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays[J]. Nano Letters, 2013, 13 (10): 4690-4696.
[15]  Xu W, Ling X, Xiao J, et al. Surface enhanced raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9281-9286.
[16]  Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224.
[17]  Zhu J, Liu Q H, Lin T. Manipulating light absorption of graphene using plasmonic nanoparticles[J]. Nanoscale, 2013, 5(17): 7785-7789.
[18]  Ling X, Xie L, Fang Y, et al. Can graphene be used as a substrate for raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.
[19]  Hao Q, Wang B, Bossard J A, et al. Surface-enhanced raman scattering study on graphene-coated metallic nanostructure substrates[J]. Journal of Physical Chemistry C, 2012, 116(13): 7249-7254.
[20]  Nelson F J, Kamineni V K, Zhang T, et al. Optical properties of largearea polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry[J]. Applied Physics Letters, 2010, 97(25): 253110.
[21]  Zhang L, Jiang C, Zhang Z. Graphene oxide embedded sandwich nanostructures for enhanced raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779.
[22]  Wang P, Liang O, Zhang W, et al. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection[J]. Advanced Materials, 2013, 25(35): 4918-4924.
[23]  Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable ramanactive nanodumbbells for single-molecule detection[J]. Nature Materials, 2010, 9(1): 60-67.
[24]  Lee J, Hua B, Park S, et al. Tailoring surface plasmons of highdensity gold nanostar assemblies on metal films for surface-enhanced raman spectroscopy[J]. Nanoscale, 2014, 6(1): 616-623.
[25]  Osberg K D, Rycenga M, Harris N, et al. Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced raman scattering[J]. Nano Letters, 2012, 12(7): 3828-3832.
[26]  Szunerits S, Boukherroub R. Sensing using localised surface plasmon resonance sensors[J]. Chemical Communications, 2012, 48(72): 8999-9010.
[27]  Du Y, Zhao Y, Qu Y, et al. Enhanced light-matter interaction of graphene-gold nanoparticles hybrid films for high-performance sers detection[J]. Journal of Materials Chemistry C, 2014, 2: 4683-4691.
[28]  Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.
[29]  Fang Z, Wang Y, Schather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14 (1): 299-304.
[30]  Brar V W, Jang M S, Sherrott M, et al. Highly confined tunable midinfrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 8(9): 7806-7813.
[31]  Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487 (7405): 82-85.
[32]  Chen J, Badioli M, Alonso-Gonzalez P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.
[33]  Vasic B, Isic G, Gajic R. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies[J]. Journal of Applied Physics, 2013, 113(1): 013110.
[34]  Xu W, Xiao J, Chen Y, et al. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy[J]. Advanced Materials, 2013, 25(6): 928-933.
[35]  Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[36]  Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.
[37]  Zhou H, Qiu C, Yu F, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes[J]. Journal of Physical Chemistry C, 2011, 115(23): 11348-11354.
[38]  Zhao Y, Chen G, Du Y, et al. Plasmonic-enhanced raman scattering of graphene on growth substrate and its application in sers[J]. Nanoscale, 2014, 6(22): 13754-13760.
[39]  刘金养. 石墨烯及其复合结构的设计、制备和性能研究[D]. 合肥:中 国科学技术大学, 2013. Liu Jinyang. Design, preparation and properties of graphene and graphene composite structures[D]. Hefei: University of Science and Technology of China, 2013.
[40]  Li X, Choy W C H, Ren X, et al. Highly intensified surface enhanced raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system[J]. Advanced Functional Materials, 2014, 24(21): 3114-3122.
[41]  Zhao Y, Li X, Du Y, et al. Strong light-matter interactions in subnanometer gaps defined by monolayer graphene: Toward highly sensitive sers substrates[J]. Nanoscale, 2014, 6(19): 11112-11120.
[42]  Zhao Y, Zeng W, Tao Z, et al. Highly sensitive surface-enhanced raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids[J]. Chemical Communications, 2015, 51(5): 866-869.
[43]  GarciadeAbajoFJG.Grapheneplasmonics:Challengesand opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.
[44]  KoppensFHL,ChangDE,ThongrattanasiriS,etal.Graphene plasmonics: A platform for strong light-matter interactions[J]. Optics & Photonics News, 2011, 22(12): 36-36.
[45]  Zhan T R, Zhao F Y, Hu X H, et al. Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies[J]. Physical Review B, 2012, 86(16): 165416.
[46]  Gao W, Shu J, Qiu C, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. Acs Nano, 2012, 6(9): 7806-7813.
[47]  Zhao Y, Hu X, Chen G, et al. Infrared biosensors based on graphene plasmonics: Modeling[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17118-17125.
[48]  Zhao Y, Chen G, Tao Z, et al. High Q-factor plasmonic resonators in continuous graphene excited by insulator-covered silicon gratings[J]. RSC Advances, 2014, 4: 26535-26542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133