全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

三氯化铁基少层石墨烯插层化合物的拉曼光谱

DOI: 10.3981/j.issn.1000-7857.2015.05.001, PP. 13-17

Keywords: 石墨烯,拉曼光谱,少层石墨烯插层化合物,三氯化铁基

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用拉曼光谱技术,研究了三氯化铁插层掺杂的少层石墨烯薄片。通过G带拉曼成像可判明样品不同的插层掺杂部分及其掺杂程度。G带拉曼峰在双层石墨烯和四层石墨烯中分别为单峰和双峰的不同结构。在石墨烯边缘处,G带拉曼峰会比其内部多出1个本征的G0峰,说明石墨烯边缘仍然存在未经插层掺杂的石墨烯。经过插层的双层石墨烯2D带拉曼峰仍可拟合出4个洛伦兹峰。

References

[1]  Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite[J]. Advances in Physics, 2002, 51(1): 1-186.
[2]  Caswell N, Solin S A. Vibrational excitations of pure FeCl3 and graphite intercalated with ferric chloride[J]. Solid State Communications, 1978, 27 (10): 961-967.
[3]  Enoki T S M, Endo M. Graphite intercalation compounds and applications[M]. London: Oxford University Press, 2003.
[4]  Underhill C, Leung S Y, Dresselhaus G, et al. Infrared and Raman spectroscopy of graphite-ferric chloride[J]. Solid State Communications, 1979, 29(11): 769-774.
[5]  Grüneis A, Attaccalite C, Rubio A, et al. Electronic structure and electronphonon coupling of doped graphene layers in KC8[J]. Physical Review B, 2009, 79(20): 205106.
[6]  Zhao W, Tan P H, Liu J, et al. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability[J]. Journal of the American Chemical Society, 2011, 133(15): 5941-5946.
[7]  Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12): 4863-4868.
[8]  Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
[9]  Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[10]  Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662-662.
[11]  Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[12]  Khrapach I, Withers F, Bointon T H, et al. Novel highly conductive and transparent graphene-based conductors[J]. Advanced Materials, 2012, 24(21): 2844-2849.
[13]  Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4): 210-215.
[14]  Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 3 (4): 206-209.
[15]  Ni Z, Wang Y, Yu T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4): 273-291.
[16]  Dresselhaus M, Malard L, Pimenta M, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5): 51-87.
[17]  Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1): 47-57.
[18]  Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[19]  Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical transactions of the royal society of London series A: Mathematical, Physical and Engineering Sciences, 2004, 362(1824): 2271-2288.
[20]  ZhanD,SunL,NiZH,etal.FeCl3-basedfew-layergraphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping[J]. Advanced Functional Materials, 2010, 20(20): 3504-3509.
[21]  Chan C, Ho K, Kamitakahara W. Zone-center phonon frequencies for graphite and graphite intercalation compounds: Charge-transfer and intercalate-coupling effects[J]. Physical Review B, 1987, 36(6): 3499.
[22]  Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9(4): 1433-1441.
[23]  Hong J, Park M K, Lee E J, et al. Origin of new broad Raman D and G peaks in annealed graphene[J]. Scientific Reports, 2013, 3: 2700..
[24]  Can?ado L G, Pimenta M A, Neves B R A, et al. Influence of the atomic structure on the Raman spectra of graphite edges[J]. Physical Review Letters, 2004, 93(24): 247401.
[25]  Mohiuddin T, Lombardo A, Nair R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[J]. Physical Review B, 2009, 79(20): 205433.
[26]  Kim N, Kim K S, Jung N, et al. Synthesis and electrical characterization of magnetic bilayer graphene intercalate[J]. Nano Letters, 2011, 11(2): 860-865.
[27]  Metz W, Siemsglüss L. Messungen und berechnungen zur kinetik der einlagerung von FeCl3 in graphit[J]. Carbon, 1978, 16(4): 225-229.
[28]  Barker J, Croft R. Studies on the formation of graphite-ferric chloride complexes: Kinetics of formation[J]. Australian Journal of Chemistry, 1953, 6(3): 302-314.
[29]  Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene[J]. Nano Letters, 2007, 7(2): 238-242.
[30]  Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8 (4): 235-246.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133