全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2010 

6-连通图最长圈上的可收缩边

, PP. 75-77

Keywords: 连通度,可收缩边,断片,端片

Full-Text   Cite this paper   Add to My Lib

Abstract:

图的可收缩边与可去边是研究连通图的构造和使用归纳法证明连通图一些性质的有力工具。设G是一个6-连通图,e∈E(G),若收缩e后得到的图仍是6-连通的,则称e是G的可收缩边。采用树型结构理论进行分类讨论,得到如下结论①如果Px=x1x2…xn=y是6-连通图G的一条最长(x,y)-路,xixi+1是一条不可收缩边,且S={xi,xi+1,u1,u2,u3,u4}是其对应的6-点割,则G-S的每一个断片至少包含P上的一个点;②设Px=x1x2…xn=y是6-连通图G的一条最长(x,y)-路,且G的任意断片的阶都大于2。如果P上任意顶点xi都满足条件d(xi)≥7或者若d(xi)=6则[V(P)]中无3-圈包含它,那么P上至少包含一条可收缩边。在上述结论的基础上,进一步研究了任意断片阶都大于2的6-连通图中最长圈上的可收缩边的分布情况,得到如下新结果任意断片阶都大于2的6-连通图最长圈上至少有两条可收缩边。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133