全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2010 

基于自适应LS-SVM的柴油机进排气系统故障诊断

, PP. 77-80

Keywords: 最小二乘支持向量机,小波包,柴油机,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了应用自适应最小二乘支持向量机和小波包能量特征的柴油机进排气系统故障诊断方法。对气门间隙异常、气阀漏气等几种常见故障和系统正常运行进行小波包分解,提取频带能量作为支持向量机的输入特征向量;然后,利用自适应优化算法对最小二乘支持向量机进行优化;最后,利用基于优化参数和最小输出编码的最小二乘支持向量机进行故障分类和识别。对比实验表明,与BP神经网络和采用交叉验证的传统最小二乘支持向量机相比,该方法可克服训练时间较长、容易陷入局部最小等问题,具有较快的训练速度和较高的分类准确率,提高了传统最小二乘支持向量机算法的寻优速度,在样本数较小时仍可取得较好的效果,能有效诊断柴油机进排气系统故障。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133