全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机增量学习的电力系统暂态稳定评估

Keywords: 暂态稳定评估,机器学习,支持向量机,特征选择,增量学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于传统支持向量机的暂态稳定评估模型,通常将所有的学习样本同时参与学习,如果有新样本加入,则需要对所有样本重新学习。针对传统暂态稳定评估模型不能在线更新的不足,提出了一种支持向量机增量学习的暂态稳定评估方法。该方法利用一种快速支持向量机增量学习方法,构造递归解法将新数据增加到解中,并对模型更新前的训练数据保持Karush-Kuhn-Tucker条件。通过一次1个样本的增量学习更新暂态稳定评估模型。新英格兰39节点测试系统的仿真实验表明:所提出的方法能有效更新评估模型且大幅减少学习时间,为基于机器学习的电力系统暂态稳定在线学习提供了新思路。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133