Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and phagosome-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of 25% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB and PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein locations for Salmonella and a framework for further investigations using computational modeling. 1. Introduction The pursuit of a systems-level understanding of bacterial physiology requires not only knowledge about the identity, function, and relative abundance of proteins, but also insight into the subcellular localization of these proteins. Subcellular protein localization is linked to protein function, potential protein-protein interactions, and to interactions between a cell and its exterior environment. The observation of proteins in unexpected cellular compartments gives clues about the presence of possible alternate functions. Hence, there is a growing appreciation for the presence of bacterial “moonlighting proteins,” that is, those proteins that have a secondary function depending on subcellular location [1–3]. Experimentally verified localization also provides a foundation for describing proteins that are “hypothetical,” uncharacterized, or that contain domains of unknown function. Furthermore, with the increasing use of systems biology approaches, including genome-scale models of metabolism [4] and regulation to study microbial functions, experimentally founded protein localization on a global scale is necessary to produce more accurate model constraints. Subcellular proteomics has emerged as
References
[1]
N. R. Smalheiser, “Proteins in unexpected locations,” Molecular Biology of the Cell, vol. 7, no. 7, pp. 1003–1014, 1996.
[2]
V. Pancholi and G. S. Chhatwal, “Housekeeping enzymes as virulence factors for pathogens,” International Journal of Medical Microbiology, vol. 293, no. 6, pp. 391–401, 2003.
[3]
B. Henderson and A. Martin, “Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease,” Infection and Immunity, vol. 79, no. 9, pp. 3476–3491, 2011.
[4]
I. Thiele, D. R. Hyduke, B. Steeb et al., “A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2,” BMC Systems Biology, vol. 5, p. 8, 2011.
[5]
M. Dreger, “Subcellular proteomics,” Mass Spectrometry Reviews, vol. 22, no. 1, pp. 27–56, 2003.
[6]
M. Dreger, “Proteome analysis at the level of subcellular structures,” European Journal of Biochemistry, vol. 270, no. 4, pp. 589–599, 2003.
[7]
S. J. Callister, M. A. Dominguez, C. D. Nicora et al., “Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. aerobic and photosynthetic cell cultures,” Journal of Proteome Research, vol. 5, no. 8, pp. 1940–1947, 2006.
[8]
M. Thein, G. Sauer, N. Paramasivam, I. Grin, and D. Linke, “Efficient subfractionation of gram-negative bacteria for proteomics studies,” Journal of Proteome Research, vol. 9, no. 12, pp. 6135–6147, 2010.
[9]
R. N. Brown, M. F. Romine, A. A. Schepmoes, R. D. Smith, and M. S. Lipton, “Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification,” Journal of Proteome Research, vol. 9, no. 9, pp. 4454–4463, 2010.
[10]
E. Jung, M. Heller, J.-C. Sanchez, and D. F. Hochstrasser, “Proteomics meets cell biology: the establishment of subcellular proteomes,” Electrophoresis, vol. 21, no. 16, pp. 3369–3377, 2000.
[11]
C. Bell, G. T. Smith, M. J. Sweredoski, and S. Hess, “Characterization of the mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research,” Journal of Proteome Research, vol. 11, no. 1, pp. 119–130, 2012.
[12]
D. Becher, K. Hempel, S. Sievers et al., “A proteomic view of an important human pathogen-towards the quantification of the entire staphylococcus aureus proteome,” PLoS One, vol. 4, no. 12, p. e8176, 2009.
[13]
E. Carlsohn, J. Nystr?m, H. Karlsson, A. M. Svennerholm, and C. L. Nilsson, “Characterization of the outer membrane protein profile from disease-related Helicobacter pylori isolates by subcellular fractionation and nano-LC FT-ICR MS analysis,” Journal of Proteome Research, vol. 5, no. 11, pp. 3197–3204, 2006.
[14]
G. S. Niemann, R. N. Brown, J. K. Gustin et al., “Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants,” Infection and Immunity, vol. 79, no. 1, pp. 33–43, 2011.
[15]
U. Silphaduang, M. Mascarenhas, M. Karmali, and B. K. Coombes, “Repression of intracellular virulence factors in Salmonella by the Hha and YdgT nucleoid-associated proteins,” Journal of Bacteriology, vol. 189, no. 9, pp. 3669–3673, 2007.
[16]
D. M. Cirillo, R. H. Valdivia, D. M. Monack, and S. Falkow, “Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival,” Molecular Microbiology, vol. 30, no. 1, pp. 175–188, 1998.
[17]
J. Delwick, T. Nikolaus, S. Erdogan, and M. Hensel, “Environmental regulation of Salmonella pathogenicity island 2 gene expression,” Molecular Microbiology, vol. 31, no. 6, pp. 1759–1773, 1999.
[18]
B. K. Coombes, N. F. Brown, Y. Valdez, J. H. Brumell, and B. B. Finlay, “Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL,” Journal of Biological Chemistry, vol. 279, no. 48, pp. 49804–49815, 2004.
[19]
J. N. Adkins, H. M. Mottaz, A. D. Norbeck et al., “Analysis of the Salmonella Typhimurium proteome through environmental response toward infectious conditions,” Molecular and Cellular Proteomics, vol. 5, no. 8, pp. 1450–1461, 2006.
[20]
L. A. Knodler, B. A. Vallance, J. Celli et al., “Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17733–17738, 2010.
[21]
K. A. Datsenko and B. L. Wanner, “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6640–6645, 2000.
[22]
Y. Shen, N. Toli?, R. Zhao et al., “High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry,” Analytical Chemistry, vol. 73, no. 13, pp. 3011–3021, 2001.
[23]
T. Jarvik, C. Smillie, E. A. Groisman, and H. Ochman, “Short-term signatures of evolutionary change in the Salmonella enterica serovar Typhimurium 14028 genome,” Journal of Bacteriology, vol. 192, no. 2, pp. 560–567, 2010.
[24]
S. Kim, N. Gupta, and P. A. Pevzner, “Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases,” Journal of Proteome Research, vol. 7, no. 8, pp. 3354–3363, 2008.
[25]
J. Peng, J. E. Elias, C. C. Thoreen, L. J. Licklider, and S. P. Gygi, “Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome,” Journal of Proteome Research, vol. 2, no. 1, pp. 43–50, 2003.
[26]
L. Shi, C. Ansong, H. Smallwood et al., “Proteome of Salmonella enterica serotype Typhimurium grown in a low Mg2+/pH medium,” Journal of Proteomics and Bioinformatics, vol. 2, no. 9, pp. 388–397, 2009.
[27]
M. P. Molloy, B. R. Herbert, M. B. Slade et al., “Proteomic analysis of the Escherichia coli outer membrane,” European Journal of Biochemistry, vol. 267, no. 10, pp. 2871–2881, 2000.
[28]
N. Y. Yu, J. R. Wagner, M. R. Laird et al., “PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes,” Bioinformatics, vol. 26, no. 13, pp. 1608–1615, 2010.
[29]
V. Santoni, M. Molloy, and T. Rabilloud, “Membrane proteins and proteomics: un amour impossible?” Electrophoresis, vol. 21, no. 6, pp. 1054–1070, 2000.
[30]
T. Rabilloud, “Membrane proteins and proteomics: love is possible, but so difficult,” Electrophoresis, vol. 30, supplement 1, pp. S174–S180, 2009.
[31]
F. S. Berven, K. Flikka, H. B. Jensen, and I. Eidhammer, “BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria,” Nucleic Acids Research, vol. 32, pp. W394–W399, 2004.
[32]
L. K?ll, A. Krogh, and E. L. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1027–1036, 2004.
[33]
J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, vol. 157, no. 1, pp. 105–132, 1982.
[34]
R. B. Bourret, K. A. Borkovich, and M. I. Simon, “Signal transduction pathways involving protein phosphorylation in prokaryotes,” Annual Review of Biochemistry, vol. 60, pp. 401–441, 1991.
[35]
C. M. Alpuche Aranda, J. A. Swanson, W. P. Loomis, and S. I. Miller, “Salmonella Typhimurium activates virulence gene transcription within acidified macrophage phagosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10079–10083, 1992.
[36]
C. Berrier, A. Garrigues, G. Richarme, and A. Ghazi, “Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel MscL,” Journal of Bacteriology, vol. 182, no. 1, pp. 248–251, 2000.
[37]
L. N. Calhoun and Y. M. Kwon, “Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review,” Journal of Applied Microbiology, vol. 110, no. 2, pp. 375–386, 2011.
[38]
R. M. Goulter-Thorsen, I. R. Gentle, K. S. Gobius, and G. A. Dykes, “The DNA protection during starvation protein (Dps) influences attachment of Escherichia colis to abiotic surfaces,” Foodborne Pathogens and Disease, vol. 8, no. 8, pp. 939–941, 2011.
[39]
A. Lacqua, O. Wanner, T. Colangelo, M. G. Martinotti, and P. Landini, “Emergence of biofilm-forming subpopulations upon exposure of Escherichia coli to environmental bacteriophages,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 956–959, 2006.
[40]
S. L?ber, D. J?ckel, N. Kaiser, and M. Hensel, “Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals,” International Journal of Medical Microbiology, vol. 296, no. 7, pp. 435–447, 2006.
[41]
C. R. Beuzón, G. Banks, J. Deiwick, M. Hensel, and D. W. Holden, “pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella Typhimurium,” Molecular Microbiology, vol. 33, no. 4, pp. 806–816, 1999.
[42]
E. A. Miao and S. I. Miller, “A conserved amino acid sequence directing intracellular type III secretion by Salmonella Typhimurium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7539–7544, 2000.
[43]
K. Eichelberg and J. E. Galán, “Differential regulation of Salmonella Typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and HilA,” Infection and Immunity, vol. 67, no. 8, pp. 4099–4105, 1999.
[44]
K. Ehrbar, B. Winnen, and W. D. Hardt, “The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB,” Molecular Microbiology, vol. 59, no. 1, pp. 248–264, 2006.
[45]
B. K. Coombes, M. J. Lowden, J. L. Bishop et al., “SseL is a Salmonella-specific translocated effector integrated into the SsrB-controlled Salmonella pathogenicity island 2 type III secretion system,” Infection and Immunity, vol. 75, no. 2, pp. 574–580, 2007.
[46]
X. J. Yu, K. McGourty, M. Liu, K. E. Unsworth, and D. W. Holden, “pH sensing by intracellular Salmonella induces effector translocation,” Science, vol. 328, no. 5981, pp. 1040–1043, 2010.
[47]
P. Ramu, R. Tanskanen, M. Holmberg, K. L?hteenm?ki, T. K. Korhonen, and S. Meri, “The surface protease PgtE of Salmonella enterica affects complement activity by proteolytically cleaving C3b, C4b and C5,” FEBS Letters, vol. 581, no. 9, pp. 1716–1720, 2007.
[48]
S. E. Osborne, D. Walthers, A. M. Tomljenovic et al., “Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3982–3987, 2009.
[49]
H. Yoon, C. Ansong, J. E. McDermott et al., “Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella,” BMC Systems Biology, vol. 5, p. 100, 2011.
[50]
L. Shi, J. N. Adkins, J. R. Coleman et al., “Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 29131–29140, 2006.
[51]
N. G. Coldham and M. J. Woodward, “Characterization of the Salmonella Typhimurium proteome by semi-automated two dimensional HPLC-mass spectrometry: detection of proteins implicated in multiple antibiotic resistance,” Journal of Proteome Research, vol. 3, no. 3, pp. 595–603, 2004.
[52]
D. Chooneea, R. Karlsson, V. Encheva, C. Arnold, H. Appleton, and H. Shah, “Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique,” BMC Microbiology, vol. 10, p. 44, 2010.
[53]
C. K. Schmitt, J. S. Ikeda, S. C. Darnell et al., “Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella entericaserovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis,” Infection and Immunity, vol. 69, no. 9, pp. 5619–5625, 2001.