全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多步回溯Q(λ)学习的电网多目标最优碳流算法

DOI: 10.7500/AEPS20140513010

Keywords: Q(λ)学习,最优碳流,多目标优化,强化学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

为弥补传统最优潮流计算中缺少对电力网络的碳排放优化控制,文中利用基于潮流计算结果的碳流模型,提出了一种基于半马尔可夫决策过程的Q(λ)学习算法,把潮流问题中的约束、可控变量转换成算法的状态和动作,并以线性加权方式把碳流损耗、网损和电压稳定分量转化为奖励函数,通过不断试错与迭代来动态寻找最优动作策略。将该算法在IEEE57节点标准算例中进行了验证,取得了良好效果,为解决电网多目标最优碳流问题提供了一种可行、有效的方法。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133