全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力市场智能模拟中代理决策模块的实现

Keywords: 智能代理模拟,竞价策略,电力拍卖市场,Q,-learning算法,VRE,learning算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在日前交易方式下,发电厂商为了追求长期最大利润,竞价策略显得尤其重要。通常,发电厂商运用的策略过于复杂,难以用传统的博弈论方法来建模。人工智能中强化学习Q-learning算法是一种自适应的学习方法,使代理能够通过不断与环境进行交互所得到的经验进行学习,适合在电力市场智能模拟中运用。文中在开放源代码的电力市场智能模拟平台AMES上,增加了发电厂商代理基于Q-learning的竞价决策程序模块,并在5节点测试系统上进行模拟。实验结果表明,运用基于Q-learning算法竞价决策使代理可以较好地模拟发电厂商的经济特性,且在相同条件下表现出比AMES原有的VRElearning算法更强的探索能力。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133