Menkhaus M,Ullrich C,Kluge B,et al. Structural and functional organization of the surfactin synthetase multienzyme system[J]. Journal of Biological Chemistry,1993,268(11):7678-7684
[2]
Ullrich C,Kluge B,Palacz Z,et al. Cell-free biosynthesis of surfactin,a cyclic lipopeptide produced by Bacillus subtilis[J]. Biochemistry,1991,30(26):6503-6508
[3]
Nakano M M,Marahiel M A,Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis[J]. Journal of Bacteriology,1988,170(12):5662-5668
[4]
Reuter K,Mofid M R,Marahiel M A,et al. Crystal structure of the surfactin synthetase-activating enzyme Sfp:a prototype of the 4’-phosphopantetheinyl transferase superfamily[J]. EMBO J,1999,18(23):6823-6831
[5]
Lambalot R H,Gehring A M,Flugel R S,et al. A new enzyme superfamily:the phosphopantetheinyl transferases[J]. Chemistry and Biology,1996,3(11):923-936
[6]
Cosmina P,Rodriguez F,de Ferra F,et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis[J]. Molecular Microbiology,1993,8(5):821-831
[7]
Quadri L E N,Weinreb P H,Lei M,et al. Characterization of sfp,a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases[J]. Biochemistry,1998,37(6):1585-1595
[8]
Weber T,Marahiel M A. Exploring the domain structure of modular nonribosomal peptide synthetases[J]. Structure,2001,9(1):R3-R9
[9]
刘玉玲. 枯草芽孢杆菌nja-9理化诱变及subtilosinA的结构鉴定[D]. 南京:南京农业大学,2012:60-88 [Liu Y L. Physical and chemical mutation in Bacillus subtilis nja-9 and the structure identification of subtilosinA[D]. Nanjing:Nanjing Agricultural University,2012:60-88(in Chinese with English abstract)]
[10]
Hsieh F C,Li M C,Lin T C,et al. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR[J]. Current Microbiology,2004,49(3):186-191
[11]
Wang P Z,Doi R H. Overlapping promoters transcribed by Bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phases[J]. Journal of Biological Chemistry,1984,259(13):8619-8625
[12]
Gat O,Inbar I,Aloni-Grinstein R,et al. Use of a promoter trap system in Bacillus anthracis and Bacillus subtilis for the development of recombinant protective antigen-based vaccines[J]. Infection and Immunity,2003,71(2):801-813
[13]
Wang J J,Rojanatavorn K,Shih J C H. Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene[J]. Biotechnology and Bioengineering,2004,87(4):459-464
[14]
Ongena M,Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol[J]. Trends in Microbiology,2008,16(3):115-120
[15]
Stachelhaus T,Schneider A,Marahiel M A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains[J]. Science,1995,269(5220):69-72
[16]
Schneider A,Stachelhaus T,Marahiel M A. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping[J]. Molecular and General Genetics,1998,257(3):308-318
[17]
Turgay K,Marahiel M A. A general approach for identifying and cloning peptide synthetase genes[J]. Peptide Research,1993,7(5):238-241
[18]
de Ferra F,Rodriguez F,Tortora O,et al. Engineering of peptide synthetases:key role of the thioesterase-like domain for efficient production of recombinant peptides[J]. Journal of Biological Chemistry,1997,272(40):25304-25309
[19]
Tsuge K,Ano T,Hirai M,et al. The genes degQ,pps,and lpa-8(sfp)are responsible for conversion of Bacillus subtilis 168 to plipastatin production[J]. Antimicrobial Agents and Chemotherapy,1999,43(9):2183-2192