全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分子标记辅助甜瓜抗蔓枯病基因聚合及‘白皮脆’品种改良

DOI: 10.7685/j.issn.1000-2030.2015.03.004

Keywords: 甜瓜, 蔓枯病, 分子标记, 抗病性, 聚合育种
melon(Cucumis melo L.)
, gummy stem blight, marker-assisted selection, disease resistance, pyramiding breeding

Full-Text   Cite this paper   Add to My Lib

Abstract:

[目的] 为甜瓜抗蔓枯病聚合育种探索一种简单、快捷的选择方法,同时获得品质优良且高抗甜瓜蔓枯病的改良‘白皮脆’品种(系)。[方法] 利用单一抗源PI140471(含抗病基因Gsb-1)与PI420145(含抗病基因Gsb-6)杂交,结合苗期蔓枯病菌A和A1梯度接种(5×105 mL-1、5×107 mL-1和5×109 mL-1)鉴定与SSR标记CMCT505及SCAR标记SGSB1800筛选,获得聚合2个抗蔓枯病基因Gsb-1和Gsb-6的聚合抗源471-145。以聚合抗源471-145为父本,品质优异的感病品种‘白皮脆’为母本进行杂交获得F1,选取含有聚合抗源且表现高抗的F1单株,再以‘白皮脆’为轮回亲本进行品种改良。[结果] SSR标记CMCT505可以在‘白皮脆’和PI140471上分别扩增出219和190 bp的特异性片段,SCAR标记SGSB1800可以在PI420145上扩增出1 800 bp的特异性片段,而聚合单株可以同时扩增出190和1 800 bp两条特异性片段。BC3F3群体筛选结果显示一些单株已经成功聚合了Gsb-1和Gsb-6两个抗病基因。单基因抗源PI140471和PI420145对不同菌株表现出选择性抗性且抗性水平低于聚合基因抗源。田间抗性观察显示,含有2个抗性基因的植株表现为高抗甜瓜蔓枯病,与分子标记检测结果一致。本课题组创建的分子标记CMCT505和SGSB1800对抗病基因Gsb-1和Gsb-6的选择具有较高的准确性,可以很好地应用于分子标记辅助选择甜瓜抗蔓枯病聚合育种。另外,抗性观察与果实品质测定表明改良‘白皮脆’品种(品系)高抗甜瓜蔓枯病且商品性优良。[结论] 本研究初步建立了甜瓜抗蔓枯病聚合育种的分子标记辅助选择体系,为甜瓜抗蔓枯病聚合育种探索了一种简单、快捷的选择方法,同时也为甜瓜优质、抗病和高产育种提供新的遗传资源。
[Objectives] The aim of this study is to provide a rapid selection method for gummy stem blight resistance in melon pyramiding breeding and improve the resistance of ‘Baipicui’. [Methods] Single resistance source PI140471 and PI420145 were used as the donor parents with the gummy stem blight resistance genes Gsb-1 and Gsb-6, respectively. Commercial melon cultivar ‘Baipicui’ was used as the receipt parent to cross and backcross with the donor parents. Marker-assisted selection(MAS)and gradient spores vaccination identification(5×105 mL-1, 5×107 mL-1 and 5×109 mL-1)were used in each backcross and self-cross progeny. In the first place, polymerization resistance source 471-145 was used as the male parent to cross with ‘Baipicui’ to get the hybrid F1. Then, the ‘Baipicui’ was used as the female parent to cross and backcross with the F1 individuals which were resistant to gummy stem blight highly and contain two resistant genes. [Results] The results showed that the polymorphism of molecular markers were different among the parents. The PCR amplification of SSR marker CMCT505 could augment two specific fragments of 219 and 190 bp in susceptible melon cultivar ‘Baipicui’ and single resistance source PI140471, respectively. A 1 800 bp specific fragment was obtained with SCAR marker SGSB1800 in resistance source PI420145. The polymerization individuals could be amplified to produce both fragments(190 and 1 800 bp)by CMCT505 and SGSB1800. From different kinds of molecular markers’ detection results to the BC3F3 generation, it could be found that some individuals had two resistance genes(Gsb-1 and Gsb-6), while few individuals had one resistance gene. The single resistance source PI140471 and PI420145 showed lower resistance than polymerization individuals and selectively

References

[1]  Keinath A P, Farnham M W, Zitter T A. Morphological, pathological, and genetic differentiation of Didymella bryoniae and Phoma spp.isolated from cucurbits[J]. Phytopathology, 1995, 85(3):364-369
[2]  吴明珠, 伊鸿平, 冯炯鑫, 等. 哈密瓜南移东进生态育种与有机生态型无土栽培技术研究[J]. 中国工程科学, 2000, 2(8):83-88 [Wu M Z, Yi H P, Feng J X, et al. Ecobreeding of hamimelon and soilless cultivation of organic ecotype[J]. Engineering Science, 2000, 2(8):83-88(in Chinese with English abstract)]
[3]  陈秀蓉, 魏永良, 张建文. 甜瓜蔓枯病菌及其生物学特性的研究[J]. 甘肃农业大学学报, 1993, 28(1):56-61 [Chen X R, Wei Y L, Zhang J W. Studies on the muskmelon black rot fungus and its biological characters[J]. Journal of Gansu Agricultural University, 1993, 28(1):56-61(in Chinese with English abstract)]
[4]  Tsutsumi C Y, Silva N. Screening of melon populations for resistance to Didymella bryonia[J]. Braz Arch Biol Technol, 2004, 47(2):171-177
[5]  Frantz J D, Jahn M M. Five independent loci each control monogenic resistance to gummy stem blight in melon(Cucumis melo L.)[J]. Theor Appl Genet, 2004, 108(6):1033-1038
[6]  Joseph N W, Zhou X H, Chen J F. Identification of amplified fragment length polymorphism markers linked to gummy stem blight(Didymella bryoniae)resistance in melon(Cucumis melo L.)PI420145[J]. HortScience, 2009, 44(1):32-34
[7]  刘龙洲, 翟文强, 陈亚丽, 等. 甜瓜蔓枯病抗性QTL定位的研究[J]. 果树学报, 2013, 30(5):748-752 [Liu L Z, Zhai W Q, Chen Y L, et al. QTL molecular marker location of gummy stem blight resistance in melon(Cucumis melo)[J]. Journal of Fruit Science, 2013, 30(5):748-752(in Chinese with English abstract)]
[8]  Keinath A P, Holmes G J, Everts K L, et al. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon[J]. Crop Protection, 2007, 26:83-88
[9]  Zhang Y P, Molly K, Anagnostou K. Screening melon for resistance to gummy stem blight in the greenhouse and field[J]. HortScience, 1997, 32(1):117-121
[10]  Wolukau J N, Zhou X H, Li Y, et al. Resistance to gummy stem blight in melon(Cucumis melo L.)germplasm and inheritance of resistance from plant introductions 157076, 420145, and 323498[J]. HortScience, 2007, 42(2):215-221
[11]  邹明学, 许勇, 张海英, 等. 葫芦科瓜类作物分子标记辅助育种研究进展[J]. 生物技术通报, 2007(4):72-78 [Zou M X, Xu Y, Zhang H Y, et al. Progress in molecular marker-assisted breeding of Cucurbitaceae[J]. Biotechnology Bulletin, 2007(4):72-78(in Chinese with English abstract)]
[12]  Matsumoto Y, Watanabe N, Kuboyama T, et al. Cross-species transferability of 86 cucumber(Cucumis sativus L.)microsatellite markers to gherkin(C.anguria L.)[J]. Scientia Horticulturae, 2012, 136(4):110-114
[13]  朱明涛, 孙亚林, 郑莎, 等. 分子标记辅助聚合番茄抗病基因育种[J]. 园艺学报, 2010, 37(9):1416-1422 [Zhu M T, Sun Y L, Zheng S, et al. Pyramiding disease resistance genes by molecular marker-assisted selection in tomato[J]. Acta Horticulturae Sinica, 2010, 37(9):1416-1422(in Chinese with English abstract)]
[14]  马庆华, 王贵禧, 梁丽松. 质构仪穿刺试验检测冬枣质地品质方法的建立[J]. 中国农业科学, 2011, 44(6):1210-1217 [Ma Q H, Wang G X, Liang L S. Establishment of the detecting method on the fruit texture of Dongzao by puncture test[J]. Scientia Agricultura Sinica, 2011, 44(6):1210-1217(in Chinese with English abstract)]
[15]  岳欢, 吴星波, 郝俊杰, 等. 黄瓜抗白粉病分子育种研究现状与展望[J]. 植物遗传资源学报, 2014, 15(1):120-128 [Yu H, Wu X B, Hao J J, et al. Status and prospects in molecular breeding of powdery mildew resistance in cucumber[J]. Journal of Plant Genetic Resources, 2014, 15(1):120-128(in Chinese with English abstract)]
[16]  Behera T K, Staub J E, Behera S, et al. Marker-assisted backcross selection in an interspecific cucumis population broadens the genetic base of cucumber(Cucumis sativus L.)[J]. Euphytica, 2011, 178(2):261-272
[17]  Joobeur T, Nolin S J, Dean R A, et al. The fusarium wilt resistance locus Fom-2 of melon contains a single resistace gene with complex features[J]. Plant Journal, 2004, 39:283-297
[18]  Francisco J, Palomares-Rius M A, Viruel F J, et al. Simple sequence repeat markers linked to QTL for resistance to watermelon mosaic virus in melon[J]. Theor Appl Genet, 2011, 123:1207-1214
[19]  Zalapa J E, Staub J E, McCreight J D, et al. Detection of QTL for yield-related traits using re-combinant inbred lines derived from exotic and elite US western shipping melon germplasm[J]. Theor Appl Genet, 2007, 114(7):1185-1201
[20]  毕研飞, 徐兵划, 钱春桃, 等. 甜瓜抗蔓枯病育种研究进展[J]. 中国蔬菜, 2013(20):10-16 [Bi Y F, Xu B H, Qian C T, et al. Research progress in melon resistance breeding to gummy stem blight[J]. China Vegetables, 2013(20):10-16(in Chinese with English abstract)]
[21]  Perin C, Hagen L, Katzir N, et al. A reference map of Cucumis melo based on two recombinant inbred line populations[J]. Theoretical and Applied Genetics, 2002, 104(617):1017-1034
[22]  Yuan X J, Pan J S, Cai R, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber(Cucumis sativus L.)using recombinant inbred lines[J]. Euphytica, 2008, 164(2):473-491
[23]  杨光华, 范荣, 杨小锋, 等. 甜瓜果实颜色3个质量性状基因的定位[J]. 园艺学报, 2014, 41(5):898-906 [Yang G H, Fan R, Yang X F, et al. Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo[J]. Acta Horticulturae Sinica, 2014, 41(5):898-906(in Chinese with English abstract)]
[24]  张宁, 张显, 张勇, 等. 甜瓜远缘群体果实性状遗传分析[J]. 西北农业学报, 2014, 23(5):121-128 [Zhang N, Zhang X, Zhang Y, et al. Genetic analysis of fruit traits in interspecific population of melon[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(5):121-128(in Chinese with English abstract)]
[25]  Harel-Beja R, Tzuri G, Portnoy V, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes[J]. Theor Appl Genet, 2010, 121:511-533
[26]  Esteras C, Formisano G, Roig C, et al. SNP genotyping in melons:genetic variation, population structure, and linkage disequilibrium[J]. Theor Appl Genet, 2013, 126(5):1285-1303

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133