[目的] 拖拉机在田间转向过程状态多变且环境恶劣,对转向系统控制精度和算法适应能力要求较高,故研究设计变论域两级模糊PID控制方法在拖拉机电液转向系统上的应用。[方法] 在分析了电液转向系统的结构原理的基础上,建立了其主要组成部分数学模型,然后将变论域两级模糊PID方法(VFFPID)引入到控制器设计中,进行蛇形跟随性、转向响应性仿真试验,并同时与模糊PID控制算法(FPID)和基于函数型变论域模糊PID算法(XFPID)作对比分析。[结果] 蛇形跟随性试验结果表明:拖拉机电液转向系统在VFFPID的控制下,转向油缸位移最大误差只有±1.43 mm,比FPID降低了49.5%,比XFPID降低了40.7%。响应性试验结果表明:在VFFPID控制下,转向油缸执行响应时间为0.123 1 s,比FPID缩短了17.8%;转向油缸位移平均误差为0.121 9 mm,是XFPID的28.3%。[结论] 拖拉机电液转向在VFFPID的控制下油缸位移最大误差、平均误差更小,执行响应时间更短,具有更好的跟随性和控制精度。[Objectives] When driven on the farm road, the tractor has higher requirements for control precision of steering system and adaptable ability of control algorithm because of diverse condition and bad circumstance, and a method of variable universe two-stage fuzzy PID(VFFPID)was studied and designed in the application of tractor electro-hydraulic steering system. [Methods] Based on the analysis of the structure principle of new type electro-hydraulic steering system, transfer function was established and the experiments of serpentine following and steering response were conducted by introducing the method of variable universe two-stage fuzzy PID(VFFPID)into the controller design. [Results] Through comparing with fuzzy PID control algorithm(FPID)and variable universe fuzzy PID based on the functional algorithm(XFPID), the results of experiment of serpentine showed that the maximum error of VFFPID was reduced by 49.5% in comparison to FPID and was reduced by 40.7% in comparison to XFPID. The results of experiment of steering response illustrated that the response time of VFFPID was 0.123 1 s which was shorter by 17.8% than that of FPID, and the steering cylinder displacement average error of VFFPID was 0.121 9 mm which was 28.3% of XFPID. [Conclusions] The statistic demonstrated that VFFPID had smaller average error and response time, better stability and control accuracy
References
[1]
陈文良, 谢斌, 宋正河, 等. 拖拉机电控液压动力转向系统的研究[J]. 农业工程学报, 2006, 22(10):122-125 [Chen W L, Xie B, Song Z H, et al. Electro-hydraulic power steering system for tractors[J]. Transaction of the Chinese Society of Agricultural Engineering, 2006, 22(10):122-125(in Chinese with English abstract)]
[2]
Xu H, Song Y D, Lu Z X, et al. Transmission ratio research of hydraulic steering by-wire system[J]. Advanced Materials Research, 2013, 774:455-459
[3]
McClure J A. System and Method for Integrating automatic Electrical steering with GNSS guidance:America, US20140025260 A1[P]. 2014-01-23
[4]
孙以泽, 徐本州, 覃朝富. 轮式拖拉机电液转向的建模与仿真[J]. 农业机械学报, 2003, 34(5):32-35 [Sun Y Z, Xu B Z, Qin C F. Modeling and simulation of an electrohydraulic steering system for wheel-tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(5):32-35(in Chinese with English abstract)]
[5]
何卿, 高焕文, 李洪文, 等. 基于DSP的拖拉机电液转向控制[J]. 农业机械学报, 2007, 38(5):1-5 [He Q, Gao H W, Li H W, et al. Electrohydraulic steering control system of tractor based on DSP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(5):1-5(in Chinese with English abstract)]
[6]
王静, 鲁植雄, 金月, 等. 拖拉机全液压转向阻力矩与油缸推力的研究[J]. 中国农机化学报, 2013, 34(4):168-173 [Wang J, Lu Z X, Jin Y, et al. Study on resistant and piston thrust of wheeled tractor with hydraulic steering system[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4):168-173(in Chinese with English abstract)]
[7]
刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京:电子工业出版社, 2003:63-82 [Liu J K. Advanced PID Control and MATLAB Simulation[M]. Beijing:Publishing House of Electronics Industry, 2003:63-82(in Chinese)]
[8]
李洪兴. 变论域自适应模糊控制器[J]. 中国科学:E辑, 1999, 29(1):33-42 [Li H X. Variable universe adaptive fuzzy-controller[J]. Science in China:Series E, 1999, 29(1):33-42(in Chinese)]
[9]
胡晓飞, 詹学峰, 朱秀昌. 基于自适应变论域模糊理论的CBR视频码率控制策略[J]. 信号处理, 2009, 25(7):1141-1145 [Hu X F, Zhan X F, Zhu X C. Rate control strategy for CBR video coding based on adaptive variable universe fuzzy theory[J]. Signal Processing, 2009, 25(7):1141-1145(in Chinese with English abstract)]
[10]
常江雪. 拖拉机线控液压转向系统的转向控制策略研究[D]. 南京:南京农业大学, 2012:22-29 [Chang J X. Research on steering control strategy of the tractor’s hydraulic steering by-wire system[D]. Nanjing:Nanjing Agricultural University, 2012:22-29(in Chinese with English abstract)]
[11]
强宝民, 刘保杰. 电液比例阀控液压缸系统建模与仿真[J]. 起重运输机械, 2011(11):35-39 [Qiang B M, Liu B J. Modeling and simulation of electro-hydraulic proportional valve controlled cylinder system[J]. Hoisting and Conveying Machinery, 2011(11):35-39(in Chinese with English abstract)]
[12]
黎?柏. 电液比例控制与数字控制系统[M]. 北京:机械工业出版社, 1997 [Li Q B. Electro Hydraulic Proportional Control and Digital Control System[M]. Beijing:China Machine Press, 1997(in Chinese)]
[13]
潘永平, 王钦若. 变论域自适应模糊PID控制器设计[J]. 电气自动化, 2007, 29(3):9-11 [Pan Y P, Wang Q R. Design of adaptive fuzzy-PID controller with variable universe[J]. Electrical Automation, 2007, 29(3):9-11(in Chinese with English abstract)]
[14]
李洪兴, 苗志宏, 王加银. 四级倒立摆的变论域自适应模糊控制[J]. 中国科学:E辑, 2002, 32(1):65-75 [Li H X, Miao Z H, Wang J Y. Variable universe adaptive fuzzy control of the four stage inverted pendulu[J]. Science in China:Series E, 2002, 32(1):65-75(in Chinese)]
[15]
潘湘飞, 宋立忠. 几种变论域模糊控制收缩因子有效性研究[J]. 控制工程, 2008(15):106-110 [Pan X F, Song L Z. Effectiveness of several shrinkage factors of variable universe fuzzy control[J]. Control Engineering of China, 2008(15):106-110(in Chinese with English abstract)]
[16]
田勇, 沈祖诒, 刘保国. 变论域模糊控制器及其应用研究[J]. 现代制造工程, 2005(4):98-100 [Tian Y, Shen Z Y, Liu B G. Study of flex-factor on the variable universe fuzzy controller[J]. Modern Manufacturing Engineering, 2005(4):98-100(in Chinese with English abstract)]
[17]
郭海刚, 杨万才. 符号型自适应模糊控制器[J]. 控制理论与应用, 2012, 29(5):660-664 [Guo H G, Yang W C. Symbol-type adaptive fuzzy controller[J]. Control Theory and Applications, 2012, 29(5):660-664(in Chinese with English abstract)]