全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

昆虫病原线虫Heterorhabditidoides rugaoensis及其共生菌Serratia nematodiphila R187与?\腹果蝇免疫系统的互作研究

DOI: 10.7685/j.issn.1000-2030.2015.03.009

Keywords: 昆虫病原线虫, 黑腹果蝇, 突变体, 抗菌肽, 体液免疫, Toll和Imd途径
entomopathogenic nematode
, Drosophila melanogaster, mutant, antimicrobial peptide, humoral immune, Toll and Imd pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

[目的] 本研究通过Heterorhabditidoides rugaoensis/Serratia nematodiphila R187侵染黑腹果蝇的免疫突变体,来研究该类昆虫病原线虫/共生菌成功侵染果蝇成虫的相关机制。[方法] 分别利用携带共生菌的线虫侵染、钨针沾共生菌菌悬液针刺和人工饲喂共生菌3种方法将S.nematodiphila R187植入果蝇血腔或肠道;通过果蝇死亡率、细菌菌落计数,结合果蝇体液免疫信号系统调控的2种抗菌肽――Diptericin和Drosomycin表达的Q-PCR检测,研究H.rugaoensis-S.nematodiphila R187与果蝇体液免疫系统的互作。[结果] H.rugaoensis携带共生菌和共生菌针刺侵染后同时激活果蝇的Toll和Imd途径;荧光定量PCR结果显示侵染过程中Diptericin和Drosomycin的相对表达均呈先上升再逐渐减弱的趋势;共生菌侵入果蝇血腔后,FADD突变体的Drosomycin相对表达量在6 h达到最高(100%),Dif突变体和野生型的Diptericin的相对表达量在12 h达到最高(90%)。共生菌侵染果蝇肠道时,仅在18 h时检测到抗菌肽的微弱表达。3种侵染方法均可导致果蝇死亡;Dif突变体果蝇和野生型果蝇的死亡进程相似,略慢于FADD突变体;以共生菌针刺侵染的致病力最强,20 h 果蝇全部死亡。[结论] S.nematodiphila R187侵染果蝇时,Toll途径和Imd途径都被激活;果蝇抵抗S.nematodiphila R187入侵的体液免疫信号通路主要是其Imd途径;S.nematodiphila R187可能采用免疫逃避机制从其肠道成功侵染果蝇。
[Objectives] This study focused on interaction mechanism between H.rugaoensis/S.nematophila R187 complex and humoral immune system in Drosophila melanogaster infected by the nematode/bacteria complex. [Methods] Three methods, nematode with symbiotic bacteria strain R187 infecting flies, needle-pricking the fly with the symbiotic bacterial strain R187 and feeding flies with symbiotic bacterium, were conducted to tranfer the bacterial strain R187 into hemocoel or intestine of flies. Lethal rate of flies and colonies statistic of symbiotic bacterium combined with Q-PCR detection of expression of the two antimicrobial peptides Diptericin and Drosomycin regulated respectively by Imd and Toll pathway were analyzed to recover the interaction between H.rugaoensis-S.nematodiphila R187 and the humoral immune system in D.melanogaster. The fly stocks used in this experiment were the wild type, FADD mutant(Imd)and Dif mutant(Toll). [Results] Infecting of H.rugaoensis with its symbiotic bacterial strain R187 or needle-pricking with the bacterial strain on flies could activate both the two humoral immune responses, Toll and Imd pathway. Results of fluorescence quantitative PCR detection showed that expression of Diptericin and Drosomycin in the two infecting methods had the same trend that up-regulated firstly and then gradually down-regulated. In the needle-pricking infection with symbiotic bacterium R187, the relative expression level of Drosomycin in FADD mutants was in the highest(100%)in 6 h, and those of Diptericin in Dif mutant and wild type were in the highest(90%)in 12 h. Only very weak expression of Diptericin and Drosomycin were detected in intestine infection of S.nematodiphila R187 on flies. All the three infecting methods could result in 100% lethal of flies. Lethal process of Dif mutant and wild type was similar, slowly

References

[1]  Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408
[2]  Dillman A R, Chaston J M, Adams B J, et al. An entomopathogenic nematode by any other name[J]. PLoS Pathog, 2012, 8(3):e1002527
[3]  Poinar J G, Hess R, Thomas G. Isolation of defective bacteriophages from Xenorhabdus spp.(Enterobacteriaceae)[J]. IRCS Medical Science:Microbiology, Parasitology and Infectious Diseases, 1980, 8(3/4):141
[4]  G?tz P, Boman A, Boman H G. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria[J]. Proc R SOC Lond B, 1981, 212(1188):333-350
[5]  Milstead J E. Heterorhabditis bacteriophora as a vector for introducing its associated bacterium into the hemocoel of Galleria mellonella larvae[J]. Journal of Invertebrate Pathology, 1979, 33(3):324-327
[6]  Akhurst R J. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae[J]. Journal of General Microbiology, 1982, 128(12):3061-3065
[7]  Jarosz J, Balcerzak M, Skrzypek H. Involvement of larvicidal toxins in pathogenesis of insect parasitism with the rhabditoid nematodes, Steinernema feltiae and Heterorhabditis bacteriophora[J]. Entomophaga, 1991, 36(3):361-368
[8]  Poinar J O, Jr. Taxonomy and biology of Steinernematidae and Heterorhabditidae[M]//Gaugler R, Kaya H K. Entomopathogenic Nematodes in Biological Control.London:CRC Press Inc., 1990:23-61
[9]  Bedding R A, Molyneux A S. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp.(Heterorhabditidae:Nematoda)[J]. Nematologica, 1982, 28:354-359
[10]  Akhurst R J. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae[J]. Journal of General Microbiology, 1982, 128:3061-3065
[11]  Akhurst R J, Boemare N E. Biology and taxonomy of Xenorhabdus[M]//Gaugler R, Kaya H K. Entomopathogenic Nematodes in Biological Control.London:CRC Press Inc., 1990:75-90
[12]  Morgan J A W, Kuntzelmann V, Tavernor S, et al. Survival of Xenorhabdus nematophilus and Photorhabdus luminescens in water and soil[J]. Journal of Applied Microbiology, 1997, 83:665-670
[13]  Zhang C X, Liu J R, Xu M X, et al. Heterorhabditidoides chongmingensis gen.nov., sp.nov.(Rhabditida:Rhabditidae), a novel member of the entomopathogenic nematodes[J]. J Invertebr Pathol, 2008, 98:153-168
[14]  Zhang C X, Yang S Y, Xu M X, et al. A novel species of Serratia, family Enterobacteriaceae:Serratia nematodiphila sp.nov., symbiotically associated with entomopathogenic nematode Heterorhabditidoides chongmingensis(Rhabditida:Rhabditidae)[J]. Int J Syst Evol Microbiol, 2009, 59:1603-1608
[15]  Zhang K Y, Liu X H, Tan J, et al. Heterorhabditidoides rugaoensis n.sp.(Rhabditida:Rhabditidae), a novel highly pathogenic entomopathogenic nematode member of Rhabditidae[J]. Journal of Nematology, 2012, 44(4):348-360
[16]  Shapiro-Ilan D I, Han R, Dolinksi C. Entomopathogenic nematode production and application technology[J]. Journal of Nematology, 2012, 44(2):206-217
[17]  Shapiro-Ilan D I, Gouge D H, Piggott S J, et al. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control[J]. Biological Control, 2006, 38:124-133
[18]  Ramet M. The fruit fly Drosophila melanogaster unfolds the secrets of innate immunity[J]. Acta Paediatrica, 2012, 101:900-905
[19]  Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster[J]. Annu Rev Immunol, 2007, 25:697-743
[20]  Kounatidis I, Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection[J]. Open Biol, 2012, 2(5):120075
[21]  Rutschmann S, Kilinc A, Ferrandon D. Cutting edge:the Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila[J]. J Immunol, 2002, 168:1542-1546
[22]  Lemaitre B, Kromer-M E, Michaut L, et al. A recessive mutation, immune deficiency(imd), defines two distinct control pathways in the Drosophila host defense[J]. Proc Natl Acad Sci USA, 1995, 92:9465-9469
[23]  Bulet P, Hetru C, Dimarcq J L, et al. Antimicrobial peptides in insects:structure and function[J]. Dev Comp Immunol, 1999, 23:329-344
[24]  Hetru C, Hoffmann J. NF-κB in the immune response of Drosophila[J]. Cold Spring Harb Perspect Biol, 2009, 1(6):a000232
[25]  Uvell H, Engstrom Y. A multilayered defense against infection:combinatorial control of insect immune genes[J]. Trends Genet, 2007, 23(7):342-349
[26]  Hallem E A, Rengarajan M, Ciche T A, et al. Nematodes, bacteria, and flies:a tripartite model for nematode parasitism[J]. Curr Biol, 2007, 17:898-904
[27]  Castillo J C, Shokal U, Eleftherianos I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria[J]. J Insect Physiol, 2013, 59:179-185
[28]  Aymeric J L, Givaudan A, Duvic B. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens[J]. Mol Immunol, 2010, 47:2342-2348
[29]  Nehme N T, Liegeois S, Kele B, et al. A model of bacterial intestinal infections in Drosophila melanogaster[J]. PLoS Pathog, 2007, 3(11):e173
[30]  Apidianakis Y, Mindrinos M N, Xiao W, et al. Profiling early infection responses:Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression[J]. Proc Natl Acad Sci USA, 1995, 102(7):2573-2578
[31]  Costa A, Jan E, Sarnow P, et al. The Imd pathway is involved in antiviral immune responses in Drosophila[J]. PLoS ONE, 2009, 4(10):e7436
[32]  Castillo J C, Shokal U, Eleftherianos I. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes[J]. Virulence, 2012, 3(3):339-347
[33]  Apidianakis Y, Rahme L G. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection[J]. Nat Protoc, 2009, 4(9):1285-1294

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133