全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水稻与稻瘟病菌互作机制研究进展

DOI: 10.7685/j.issn.1000-2030.2012.05.001, PP. 1-8

Keywords: 水稻,稻瘟病菌,互作

Full-Text   Cite this paper   Add to My Lib

Abstract:

水稻-稻瘟病菌互作已成为研究植物与病原物互作的模式系统,本文从稻瘟病菌侵入机制、效应分子功能、水稻抗稻瘟病免疫系统及抗病基因和无毒基因的互作等方面对水稻与稻瘟病菌互作机制研究进展进行了综述,并对有待进一步研究的问题进行了讨论和展望。

References

[1]  Goff S A,Ricke D,Lan T H,et al.A draft sequence of the rice genome(Oryza sativa L.ssp.japonica)[J].Science,2002,296:92-100
[2]  Dean R A,Talbot N J,Ebbole D J,et al.The genome sequence of the rice blast fungus Magnaporthe grisea[J].Nature,2005,434:980-986
[3]  Galhano R,Talbot N J.The biology of blast:understanding how Magnaporthe oryzae invades rice plants[J].Fungal Biology Reviews,2011,25(1):61-67
[4]  Veneault-Fourrey C,Barooah M,Egan M,et al.Autophagic fungal cell death is necessary for infection by the rice blast fungus[J].Science,2006,312:580-583
[5]  Talbot N J.On the trail of a cereal killer:exploring the biology of Magnaporthe grisea[J].Annu Rev Microbiol,2003,57:177-202
[6]  Ebbole D J.Magnaporthe as a model for understanding host-pathogen interactions[J].Annu Rev Phytopathol,2007,45:437-456
[7]  de Jong J C,McCormack B J,Smirnoff N,et al.Glycerol generates turgor in rice blast[J].Nature,1997,389:244
[8]  van de Wouw A P,Howlett B J.Fungal pathogenicity genes in the age of’omics’[J].Mol Plant Pathol,2011,12:507-514
[9]  Flor H H.Current status of the gene-for-gene concept[J].Annu Rev Phytopathol,1971,9:275-296
[10]  Kang S,Sweigard J A,Valent B.The PWL host specificity gene family in the blast fungus Magnaporthe grisea[J].Mol Plant Microbe Interact,1995,8:939-948
[11]  Sweigard J A,Carroll A M,Kang S,et al.Identification,cloning,and characterization of PWL2,a gene for host species specificity in the rice blast fungus[J].Plant Cell,1995,7:1221-1233
[12]  Jia Y,McAdams S A,Bryan G T,et al.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J].EMBO J,2000,19:4004-4014
[13]  Li W,Wang B,Wu J,et al.The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t[J].Mol Plant Microbe Interact,2009,22:411-420
[14]  Miki S,Matsui K,Kito H,et al.Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae[J].Mol Plant Pathol,2009,10:361-374
[15]  Peyyala R,Farman M L.Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass possess a functional copy of the AVR1-CO39 avirulence gene[J].Mol Plant Pathol,2006,7:157-165
[16]  王建飞,鲍永美,李培富,等.基于无毒基因序列的稻瘟病菌指纹类型与致病型的关系初探[J].中国水稻科学,2006,20(1):109-112
[17]  Soanes D M,Alam I,Cornell M,et al.Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis[J].PLoS ONE,2008,3:e2300
[18]  Soanes D M,Richards T A,Talbot N J.Insights from sequencing fungal and oomycete genomes:what can we learn about plant disease and the evolution of pathogenicity?[J].Plant Cell,2007,19:3318-3326
[19]  Saitoh H,Fujisawa S,Mitsuoka C,et al.Large-scale gene disruption in Magnaporthe oryzae identifies MC69,a secreted protein required for infection by monocot and dicot fungal pathogens[J].PLoS Pathog,2012,8:e1002711
[20]  Yoshida K,Saitoh H,Fujisawa S,et al.Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae[J].Plant Cell,2009,21:1573-1591
[21]  Collemare J,Billard A,Bohnert H U,et al.Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea:the role of hybrid PKS-NRPS in pathogenicity[J].Mycol Res,2008,112:207-215
[22]  Bohnert H U,Fudal I,Dioh W,et al.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J].Plant Cell,2004,16:2499-2513
[23]  Fudal I,Collemare J,Bohnert H U,et al.Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration[J].Eukaryot Cell,2007,6:546-554
[24]  Jones J D,Dangl J L.The plant immune system[J].Nature,2006,444:323-329
[25]  Boller T,He S Y.Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J].Science,2009,324:742-744
[26]  Boller T,Felix G.A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J].Annu Rev Plant Biol,2009,60:379-406
[27]  Nurnberger T,Brunner F,Kemmerling B,et al.Innate immunity in plants and animals:striking similarities and obvious differences[J].Immunol Rev,2004,198:249-266
[28]  Vergne E,Grand X,Ballini E,et al.Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae[J].BMC Plant Biol,2010,10:206
[29]  Mishra N S,Tuteja R,Tuteja N.Signaling through MAP kinase networks in plants[J].Arch Biochem Biophys,2006,452:55-68
[30]  Eulgem T,Somssich I E.Networks of WRKY transcription factors in defense signaling[J].Curr Opin Plant Biol,2007,10:366-371
[31]  Peters R J.Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants[J].Phytochemistry,2006,67:2307-2317
[32]  Huckelhoven R.Cell wall-associated mechanisms of disease resistance and susceptibility[J].Annu Rev Phytopathol,2007,45:101-127
[33]  Jwa N S,Agrawal G K,Tamogami S,et al.Role of defense/stress-related marker genes,proteins and secondary metabolites in defining rice self-defense mechanisms[J].Plant Physiol Biochem,2006,44:261-273
[34]  van Loon L C,Rep M,Pieterse C M.Significance of inducible defense-related proteins in infected plants[J].Annu Rev Phytopathol,2006,44:135-162
[35]  Greenberg J T,Yao N.The role and regulation of programmed cell death in plant-pathogen interactions[J].Cell Microbiol,2004,6:201-211
[36]  Chisholm S T,Coaker G,Day B,et al.Host-microbe interactions:shaping the evolution of the plant immune response[J].Cell,2006,124:803-814
[37]  Underhill D M,Ozinsky A.Toll-like receptors:key mediators of microbe detection[J].Curr Opin Immunol,2002,14:103-110
[38]  Kaku H,Nishizawa Y,Ishii-Minami N,et al.Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J].Proc Natl Acad Sci USA,2006,103:11086-11091
[39]  Wan J,Zhang X C,Neece D,et al.A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J].Plant Cell,2008,20:471-481
[40]  Chen X,Ronald P C.Innate immunity in rice[J].Trends Plant Sci,2011,16:451-459
[41]  Zhou B,Qu S,Liu G,et al.The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J].Mol Plant Microbe Interact,2006,19:1216-1228
[42]  Ashikawa I,Hayashi N,Yamane H,et al.Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J].Genetics,2008,180:2267-2276
[43]  张哲,姜华,王艳丽,等.稻瘟菌无毒基因研究进展[J].遗传,2011,33(6):591-600
[44]  Kawano Y,Akamatsu A,Hayashi K,et al.Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J].Cell Host Microbe,2010,7:362-375
[45]  Nakashima A,Chen L,Thao N P,et al.RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J].Plant Cell,2008,20:2265-2279
[46]  Lieberherr D,Thao N P,Nakashima A,et al.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice[J].Plant Physiol,2005,138:1644-1652
[47]  Chumley F G,Valent B.Genetic analysis of melanin-deficient,nonpathogenic mutants of Magnaporthe grisea[J].Mol Plant-Microbe Interact,1990,3:135-143
[48]  Wilson R A,Talbot N J.Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J].Nat Rev Microbiol,2009,7:185-195
[49]  Kankanala P,Czymmek K,Valent B.Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus[J].Plant Cell,2007,19:706-724
[50]  Idnurm A,Howlett B J.Pathogenicity genes of phytopathogenic fungi[J].Mol Plant Pathol,2001,2:241-255
[51]  Hogenhout S A,van der Hoorn R A,Terauchi R,et al.Emerging concepts in effector biology of plant-associated organisms[J].Mol Plant Microbe Interact,2009,22:115-122
[52]  Block A,Alfano J R.Plant targets for Pseudomonas syringae type Ⅲ effectors:virulence targets or guarded decoys?[J].Curr Opin Microbiol,2011,14:39-46
[53]  Panstruga R,Parker J E,Schulze-Lefert P.SnapShot:plant immune response pathways[J].Cell,2009,136:978.e1-3
[54]  Alfano J R,Collmer A.Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense[J].Annu Rev Phytopathol,2004,42:385-414
[55]  Birch P R,Armstrong M,Bos J,et al.Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans[J].J Exp Bot,2009,60:1133-1140
[56]  de Torres M,Mansfield J W,Grabov N,et al.Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis[J].Plant J,2006,47:368-382
[57]  Ellis J G,Rafiqi M,Gan P,et al.Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J].Curr Opin Plant Biol,2009,12:399-405
[58]  Mentlak T A,Kombrink A,Shinya T,et al.Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J].Plant Cell,2012,24:322-335
[59]  Dangl J L,Dietrich R A,Richberg M H.Death don’t have no mercy:cell death programs in plant-microbe interactions[J].Plant Cell,1996,8:1793-1807
[60]  van der Biezen E A,Jones J D.The NB-ARC domain:a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals[J].Curr Biol,1998,8:226-227
[61]  Rairdan G J,Moffett P.Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation[J].Plant Cell,2006,18:2082-2093
[62]  Albrecht M,Takken F L.Update on the domain architectures of NLRs and R proteins[J].Biochem Biophys Res Commun,2006,339:459-462
[63]  Tameling W I,Elzinga S D,Darmin P S,et al.The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity[J].Plant Cell,2002,14:2929-2939
[64]  Meyers B C,Dickerman A W,Michelmore R W,et al.Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily[J].Plant J,1999,20:317-332
[65]  Keen N T.Gene-for-gene complementarity in plant-pathogen interactions[J].Annu Rev Genet,1990,24:447-463
[66]  Bryan G T,Wu K S,Farrall L,et al.A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J].Plant Cell,2000,12:2033-2046
[67]  Orbach M J,Farrall L,Sweigard J A,et al.A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J].Plant Cell,2000,12:2019-2032
[68]  Chen X,Shang J,Chen D,et al.A B-lectin receptor kinase gene conferring rice blast resistance[J].Plant J,2006,46:794-804
[69]  Liu J,Wang X,Mitchell T,et al.Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction[J].Mol Plant Pathol,2010,11:419-427
[70]  Zhai C,Lin F,Dong Z,et al.The isolation and characterization of Pik,a rice blast resistance gene which emerged after rice domestication[J].New Phytol,2011,189:321-334
[71]  Yuan B,Zhai C,Wang W,et al.The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes[J].Theor Appl Genet,2011,122:1017-1028
[72]  Takahashi A,Hayashi N,Miyao A,et al.Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J].BMC Plant Biol,2010,10:175
[73]  Okuyama Y,Kanzaki H,Abe A,et al.A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes[J].Plant J,2011,66:467-479
[74]  Farman M L,Leong S A.Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea:discrepancy between the physical and genetic maps[J].Genetics,1998,150:1049-1058
[75]  Kishi-Kaboshi M,Takahashi A,Hirochika H.MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis[J].Plant Signal Behav,2010,5:1653-1656
[76]  Chang J H,Urbach J M,Law T F,et al.A high-throughput,near-saturating screen for type Ⅲ effector genes from Pseudomonas syringae[J].Proc Natl Acad Sci USA,2005,102:2549-2554
[77]  Grant S R,Fisher E J,Chang J H,et al.Subterfuge and manipulation:type Ⅲ effector proteins of phytopathogenic bacteria[J].Annu Rev Microbiol,2006,60:425-449
[78]  Jakobek J L,Smith J A,Lindgren P B.Suppression of bean defense responses by Pseudomonas syringae[J].Plant Cell,1993,5:57-63
[79]  Lee S K,Song M Y,Seo Y S,et al.Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes[J].Genetics,2009,181:1627-1638
[80]  Narusaka M,Shirasu K,Noutoshi Y,et al.RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens[J].Plant J,2009,60:218-226
[81]  Sinapidou E,Williams K,Nott L,et al.Two TIR∶NB∶LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis[J].Plant J,2004,38:898-909
[82]  Loutre C,Wicker T,Travella S,et al.Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat[J].Plant J,2009,60:1043-1054
[83]  Tameling W I L,Joosten M H A J.The diverse roles of NB-LRR proteins in plants[J].Physiol Mol Plant Pathol,2007,71:126-134
[84]  Hua L,Wu J,Chen C,et al.The isolation of Pi1,an allele at the Pik locus which confers broad spectrum resistance to rice blast[J].Theor Appl Genet,2012,125(5):1047-1055
[85]  Deng Y,Zhu X,Shen Y,et al.Genetic characterization and fine mapping of the blast resistance locus Pigm(t)tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety[J].Theor Appl Genet,2006,113:705-713
[86]  李培富,史晓亮,王建飞,等.太湖流域粳稻地方品种黑壳子粳抗稻瘟病基因的分子定位[J].中国水稻科学,2007,21(6):579-584
[87]  Mackey D,Holt B F,Wiig A,et al.RIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis[J].Cell,2002,108:743-754
[88]  Axtell M J,Staskawicz B J.Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4[J].Cell,2003,112:369-377
[89]  Mackey D,Belkhadir Y,Alonso J M,et al.Arabidopsis RIN4 is a target of the type Ⅲ virulence effector AvrRpt2 and modulates RPS2-mediated resistance[J].Cell,2003,112:379-389

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133