[目的]植物功能-结构模型(functional-structural models,FSPM)是研究植物生理生态与形态结构相互反馈生长过程的有效工具。量化植株器官干质量与观赏植物外观品质的关系,不仅可以将生长模型和3D结构模型联系起来,而且使外观品质的预测更具机理性、普适性。[方法]以一品红‘中国红’(Euphorbia pulcherrima Willd‘Red China’)为试验材料,根据不同定植期(2007年7月12日、10月12日和10月30日)和不同摆放密度(16.00、11.10和8.16株?m-2)的温室盆栽试验,定量模拟分析一品红器官干质量与外观品质的关系,并用独立的试验数据进行检验。[结果]一品红冠幅、展叶数、株高、主茎粗、冠高比和花幅等外观品质指标的预测效果较好,预测值与实测值之间基于1:1线的决定系数(coefficient of determination,R2)分别为0.97、0.96、0.96、0.93、0.94和0.96,相对回归估计标准误(relative root mean squared error,rRMSE)分别为5.07%、9.16%、6.26%、5.62%、3.70%和10.60%。[结论]本研究为进一步建立温室盆栽一品红的功能-结构模型奠定了基础。[Objectives]Functional-structural models(FSPM)are models describing the development of the structure of plant as governed by physiological processes, which can be a valuable tool for examining how physiology and morphology interact in determining plant processes. However, the output of process-based crop growth model is organ dry weight, which cannot be used directly to simulate the change of the organ structure. The aim of this study was to quantify the relationship between organ dry weight and external quality traits of ornamental plants, so as to link the output of crop growth model to the input of structural model, which was an important step for developing a functional-structural model. [Methods]For this purpose, three experiments with different planting dates(July 12, 2007;October 12, 2007;October 30, 2007)and densities(16.00, 11.10 and 8.16 plant?m-2)were conducted in a multi-span Venlo type greenhouse of Nanjing(32°N, 118°E)from July 2007 to April 2008. The cultivar used in the experiments was Euphorbia pulcherrima Willd‘Red China’ which is one of the main greenhouse pot flowers in the world and the most popular festival flowers in China. The plot with 50 plants for each density treatment with three replicas was arranged in a randomized block design. In all experiments, 3 plants of each plot(9 plants per treatment)were randomly selected for non-destructive external quality measurements once every 7 days after planting. The non-destructive measurements include canopy diameter(Cd), leaf number(N), plant height(H), diameter of the main stem(Dst), ratio of canopy diameter to plant height(Rdh)and diameter of flower canopy(Cdf). One plant of each plot(3 plants per treatment)was randomly selected for destructive measurements once every development stage after planting. The destructive measurements include leaf dry weight(Wlv), stem dry weight(Wst)and bract dry weight per plant(Wbr). The relationship between organ dry weight and external quality of pot planted poinsettia was quantified based on
References
[1]
李永秀, 罗卫红. 温室蔬菜生长发育模型研究进展[J]. 农业工程学报, 2008, 24(1):307-312 [Li Y X, Luo W H. Review on research progress of greenhouse vegetable growth and development models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):307-312(in Chinese with English abstract)]
[2]
康孟珍. 植物功能结构模型研究的回顾与展望[J]. 系统仿真学报, 2012, 24(10):2039-2048 [Kang M Z. Review and perspectives on research about functional-structural plant models[J]. Journal of System Simulation, 2012, 24(10):2039-2048(in Chinese with English abstract)]
[3]
杜尚丰, 徐立鸿, 马程伟, 等. 可控环境生产系统建模、仿真与控制研究进展[J]. 中国科学:信息科学, 2010, 40(增刊):54-70 [Du S F, Xu L H, Ma C W, et al. Research on modeling, simulation and control for controlled environment production systems[J]. Scientia Sinica:Informationis, 2010, 40(Suppl):54-70(in Chinese with English abstract)]
[4]
Vos J, Evers J B, Buck-Sorlin G H, et al. Functional-structural plant modelling:a new versatile tool in crop science[J]. Journal of Experimental Botany, 2010, 61(8):2101-2115
[5]
Cieslak M, Seleznyova A N, Prusinkiewicz P, et al. Towards aspect-oriented functional-structural plant modelling[J]. Annals of Botany, 2011, 108(6):1025-1041
[6]
Godin C, Sinoquet H. Functional-structural plant modelling[J]. New Phytologist, 2005, 166(3):705-708
[7]
Kang M Z, Heuvelink E, de Reffye P. Building virtual chrysanthemum based on sink-source relationships:preliminary results[J]. Acta Horticulturae, 2006, 718:129-136
[8]
Kang M Z, Heuvelink E, Carvalho S M P, et al. A virtual plant that responds to the environment like a real one:the case for chrysanthemum[J]. New Phytologist, 2012, 195(2):384-395
[9]
de Visser P H B, van der Heijden G W A M, Marcelis L F M, et al. A functional-structural model of chrysanthemum for prediction of ornamental quality[J]. Acta Horticulturae, 2006, 718:59-66
[10]
孙兆法, 李梅, 翟晓灵, 等. 根区加温对一品红生长发育和盆花品质的影响[J]. 西北农业学报, 2006, 15(6):179-182 [Sun Z F, Li M, Zhai X L, et al. Effect of root-zone heating on growth, development and visual quality of poinsettia[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2006, 15(6):179-182(in Chinese with English abstract)]
[11]
李刚, 陈亚茹, 戴剑锋, 等. 日光温室切花郁金香花期与外观品质预测模型[J]. 生态学报, 2011, 31(14):4062-4071 [Li G, Chen Y R, Dai J F, et al. A model for predicting flowering date and external quality of cut tulip in solar greenhouse[J]. Acta Ecologica Sinica, 2011, 31(14):4062-4071(in Chinese with English abstract)]
[12]
Allen M T, Prusinkiewicz P, DeJong T M. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees:the L-PEACH model[J]. New Phytologist, 2005, 166(3):869-880
[13]
Dong Q X, Louarn G, Wang Y M, et al. Does the structure-function model Greenlab deal with crop phenotypic plasticity induced by plant spacing a case study on tomato[J]. Annals of Botany, 2008, 101(8):1195-1206
[14]
林忠辉, 莫兴国, 项月琴. 作物生长模型研究综述[J]. 作物学报, 2003, 29(5):750-758 [Lin Z H, Mo X G, Xiang Y Q. Research advances on crop growth models[J]. Acta Agronomica Sinica, 2003, 29(5):750-758(in Chinese with English abstract)]
[15]
杨月, 刘兵, 刘小军, 等. 小麦生育期模拟模型的比较研究[J]. 南京农业大学学报, 2014, 37(1):6-14. doi:10.7685/j.issn.1000-2030.2014.01.002 [Yang Y, Liu B, Liu X J, et al. Comparison of phasic development models in wheat[J]. Journal of Nanjing Agricultural University, 2014, 37(1):6-14(in Chinese with English abstract)]
[16]
朱庆生, 许允催, 曾令秋, 等. 基于L系统和三维Morphing的器官生长建模[J]. 计算机工程, 2010, 36(10):196-198 [Zhu Q S, Xu Y C, Zeng L Q, et al. Organs growth modeling based on L system and 3D morphing[J]. Computer Engineering, 2010, 36(10):196-198(in Chinese with English abstract)]
[17]
丁维龙, 陈敏智, 程志君. 植物器官可视化建模系统的设计与实现[J]. 浙江工业大学学报, 2009, 37(3):295-299, 310 [Ding W L, Chen M Z, Cheng Z J. Design and implementation of modeling system for visual plant organ[J]. Journal of Zhejiang University of Technology, 2009, 37(3):295-299, 310(in Chinese with English abstract)]
[18]
Barthélémy D, Caraglio Y. Plant architecture:a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny[J]. Annals of Botany, 2007, 99(3):375-407
[19]
Watanabe T, Hanan J S, Room P M, et al. Rice morphogenesis and plant architecture:measurement, specification and the reconstruction of structural development by 3D architectural modelling[J]. Annals of Botany, 2005, 95(5):1131-1143
[20]
孙向丽, 张启翔. 温室盆栽一品红水肥耦合效应研究[J]. 北京林业大学学报, 2011, 33(3):99-105 [Sun X L, Zhang Q X. Coupling effect of water and fertilizer on potted Euphorbia pulcherrima in greenhouse[J]. Journal of Beijing Forestry University, 2011, 33(3):99-105(in Chinese with English abstract)]