[目的]分形理论作为描述自然界和非线性系统中不光滑和不规则几何形体的有效工具,如何运用到农业土壤表面的研究中,是目前研究的热点问题.[方法]采用非接触式激光不平度测量仪测量了播种后地表(垂直于播种方向)、播种后地表(平行于播种方向)、犁地后地表(垂直于犁地方向)和整地后地表(平行于整地方向)4种农业地表的不平度,分别采用变差法、结构函数法和轮廓均方根法分析了4种农业地表不平度的分形维数、无标度区间及相关系数.[结果]犁地后地表起伏大,但分维小,细微结构少,复杂程度小;播种后地表(垂直于播种方向)起伏大,但复杂程度小,播种后地表(平行于播种方向)起伏小,但复杂程度高;同在平行于耕作方向,整地后地表的起伏大于播种后地表的起伏,但其复杂程度低于后者.[结论]均方根法计算农业土壤表面不平度的分形维数更精确,线性回归的相关性更好,无标度区间变化很小.[Objectives]How the fractal theory as an efficient tool to describe rough and irregular geometrical feature in nonlinear system and nature is applied into agricultural soil research is hot issue at present. [Methods]The roughness data of agricultural soil surface after sowed(perpendicular to the sowed direction), sowed surface(along with the sowed direction), ploughed surface(perpendicular to the ploughed direction), and rolled surface(along with the rolled direction)were obtained by laser roughness measuring instrument. The fractal dimensions, non-scale space and correlation coefficient were computed respectively by three methods, i.e.variate-difference method, the structure function method, and the mean square root method. [Results]The undulation of surface after ploughed was large, but with small fractal dimension and less fine structure, and low complex degree as a consequence;the undulation of surface in perpendicular direction after sowed was also large, but with low complicated degree, while the undulation in parallel direction was conversely small with high complicated degree;the undulation of surface in rolled direction after rolled was larger than that was sowed, but with low complicated degree. [Conclusions]The fractal dimension calculated by using the mean square root method was the most accurate, which had good correlation of linear regression and small variation of non-scale range
References
[1]
Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco:Freeman,1982:150-154
[2]
Michael F B. Fractals Everywhere[M]. 2nd ed. Boston:Academic Press,1993:254-270
[3]
孙洪泉. 分形几何与分形插值[M]. 北京:科学出版社,2011:10-13 [Sun H Q. Fractal Geometry and Fractal Interpolation[M]. Beijing:Science Press,2011:10-13(in Chinese)]
[4]
Huang Y M,Chen C J. 3D Fractal reconstruction of terrain profile data based on digital elevation model[J]. Chaos,Solitons and Fractals,2009,40(4):1741-1749
[5]
丁俊,孙洪泉. 优化分形维数计算方法[J]. 四川建筑科学研究,2011,37(5):54-56,69 [Ding J,Sun H Q. The optimum analysis on determination methods of fractal dimension[J]. Sichuan Building Science,2011,37(5):54-56,69(in Chinese with English abstract)]
[6]
蔡新民,丁新新,潘健,等. 分形理论在土壤科学研究中的应用[J]. 防护林科技,2011(6):8-13 [Cai X M,Ding X X,Pan J,et al. Application of fractal theory in soil science[J]. Protection Forest Science and Technology,2011(6):8-13(in Chinese with English abstract)]
[7]
Cheng Z H,Zhang J B,Zhu A N. Introducing fractal dimension to estimation of soil sensitivity to preferential flow[J]. Pedosphere,2002,12(3):201-206
[8]
朱华,葛世荣. 结构函数与均方根分形表征效果的比较[J]. 中国矿业大学学报,2004,33(4):396-399 [Zhu H,Ge S R. Comparison of fractal characterization effects of structure function and mean square root[J]. Journal of China University of Mining Technology,2004,33(4):396-399(in Chinese with English abstract)]
[9]
Lu Z X,Nan C,Perdok U D,et al. Characterisation of soil profile roughness[J]. Biosystems Engineering,2005,91(3):369-377
[10]
蔡祥,孙宇瑞,林剑辉,等. 基于激光反射的土壤表面粗糙度测量装置设计与试验[J]. 农业机械学报,2010,41(1):68-71 [Cai X,Sun Y R,Lin J H,et al. Design of a laser scanner for characterizing soil surface roughness[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(1):68-71(in Chinese with English abstract)]
[11]
黄战华,罗曾,李莎,等. 激光三角法大量程小夹角位移测量系统的标定方法研究[J]. 光电工程,2012,39(7):26-30 [Huang Z H,Luo Z,Li S,et al. Calibration method of large-arrange small-angle laser triangulation measuring system[J]. Opto-Electronic Engineering,2012,39(7):26-30(in Chinese with English abstract)]
[12]
赵兰英. 基于分形理论的路面不平度分级与模拟研究[D]. 南京:南京农业大学,2009 [Zhao L Y. Study of road surface roughness grade and simulation based on fractal theory[D]. Nanjing:Nanjing Agricultural University,2009(in Chinese with English abstract)]
[13]
李志强,马吉胜,李伟. 频谱法计算路面不平度分形维数的方法[J]. 军械工程学院学报,2009,21(2):41-44 [Li Z Q,Ma J S,Li W. The method of computing road roughness fractal dimension by frequency-spectrum method[J]. Journal of Ordnance Engineering College,2009,21(2):41-44(in Chinese with English abstract)]
[14]
Zallen R. The Physics of Amorphous Solids[M]. New York:John Wiley & Sons,1983:80-85
[15]
He L,Zhu J. The fractal character of processed metal surfaces[J]. Wear,1997,208(1/2):17-24
[16]
王建军,魏宗信. 粗糙表面轮廓分形维数的计算方法[J]. 工具技术,2006,40(8):73-75 [Wang J J,Wei Z X. Computation method for fractal dimension of rough surface profile[J]. Tool Engineering,2006,40(8):73-75(in Chinese with English abstract)]
[17]
侯占峰,李林,陈智,等. 土壤表面分形表征效果对比[J]. 农业机械学报,2011,42(4):39-42 [Hou Z F,Li L,Chen Z,et al. Effects comparison on fractal characterization for soil surface roughness[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(4):39-42(in Chinese with English abstract)]
[18]
Gadelmawla E S,Koura M M,Maksoud T M A,et al. Roughness parameters[J]. Journal of Materials Processing Technology,2002,123(1):133-145
[19]
梁俊,蒋金龙,赵雪莲,等. 随机中点位移法在三维地形插值显示的适用性分析[J]. 测绘科学,2007,32(3):44-46 [Liang J,Jiang J L,Zhao X L,et al. The applicability analysis of MPD method in 3D terrain interpolation[J]. Science of Surveying and Mapping,2007,32(3):44-46(in Chinese with English abstract)]
[20]
鲁涛,赵雁,欧阳的华. 含能材料表面分形维数计算及其对摩擦感度影响[J]. 计算机与应用化学,2014,31(2):226-230 [Lu T,Zhao Y,Ouyang D H. Estimation of surface fractal dimension of energetic materials and influence on friction sensitivity[J]. Computers and Applied Chemistry,2014,31(2):226-230(in Chinese with English abstract)]