全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Kriging插值的无检测器路段交通数据插补方法

, PP. 118-126

Keywords: 智能交通系统,交通地理信息系统,交通数据分析,浮动车,Kriging插值,空间相关性

Full-Text   Cite this paper   Add to My Lib

Abstract:

从交通流扩散的特点和人的先验知识出发,提出采用Kriging插值法对路网中无检测器路段进行交通数据插补。基于交通数据空间相关性的特征,对交通数据进行空间建模,从而以空间距离作为度量基准对未知路段交通数据进行估计。利用南昌市浮动车系统中提取的路段行程速度作为试验数据,进行了试验验证。研究结果表明在城市交通中各个典型时段行程速度的插补值标准差可以控制在8km?h-1以内;在针对路网形态差异较大的中心区和湖区分别进行的试验中,行程速度的平均绝对误差都保持在2~5km?h-1之间。可见,该方法具有良好的时态和区域移植性。

References

[1]  WANG Yi-bing, PAPAGEORGIOU M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach[J]. Transportation Research Part B: Methodological, 2005, 39(2): 141-167.
[2]  TOBLER W R. A computer movie simulating urban growth in the Detroit Region[J]. Economic Geography, 1970, 46(S): 234-240.
[3]  ZOU Hai-xiang, YUE Yang, LI Qing-quan, et al. A spatial analysis approach for describing spatial pattern of urban traffic state [C]∥IEEE. 13th International IEEE Annual Conference on Intelligent Transportation Systems. Madeira Island: IEEE, 2010: 557-562.
[4]  BRAXMEIER H, SCHMIDT V, SPODAREV E. Kriged road-traffic maps[C]∥PILZ J. Interfacing Geostatistics and GIS. Berlin: Springer, 2009: 105-119.
[5]  HACKNEY J K, BERNARD M, BINDRA S, et al. Predicting road system speeds using spatial structure variables and network characteristics[J]. Journal of Geographical Systems, 2007, 9(4): 397-417.
[6]  WANG Xiao-kun, KOCKELMAN K M. Forecasting network data: spatial interpolation of traffic counts using Texas data[J]. Transportation Research Record, 2009(2105): 100-108.
[7]  MIURA H. A study of travel time prediction using universal Kriging [J]. TOP, 2009, 18(1): 257-270.
[8]  CRESSIE N. The origins of Kriging[J]. Mathematical Geology, 1990, 22(3): 239-252.
[9]  VER HOEF J M, PETERSON E, THEOBALD D. Spatial statistical models that use flow and stream distance[J]. Environmental and Ecological Statistics, 2006, 13(4): 449-464.
[10]  YUE Yang, ZOU Hai-xiang, LI Qing-quan. Urban road travel speed estimation based on low sampling floating car data[C]∥WANG Yin-hai, YI Ping, AN Shi, et al. Proceedings of the 9th International Conference of Chinese Transportation Professionals. Harbin: ASCE, 2009: 1719-1725.
[11]  SMITH B L, SCHERER W T, CONKLIN J H. Exploring imputation techniques for missing data in transportation management systems[J]. Transportation Research Record, 2003(1836): 132-142.
[12]  ZHONG Ming, LINGRAS P, SHARMA S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques[J]. Transportation Research Part C: Emerging Technologies, 2004, 12(2): 139-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133