全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主应力轴旋转下中主应力系数对软黏土性状的影响

Keywords: 路基工程,软黏土,空心圆柱仪,中主应力系数,主应力轴旋转,应力与应变关系,峰值剪切强度

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用空心圆柱仪对上海原状软黏土进行了不排水剪切试验,研究了主应力轴旋转条件下中主应力系数对饱和软黏土变形与强度特性的影响。采用等压固结模式对软黏土空心薄壁试样进行固结,并在3种不同主应力轴旋转角度下,对试样进行不同中主应力系数的不排水剪切试验。试验前提为剪切过程中平均应力、中主应力系数与主应力轴旋转角度均保持不变,而偏应力逐渐增大,直至试样破坏。试验结果表明在不同中主应力系数下,天然软黏土的变形与强度特征存在明显的差异,在3种主应力轴旋转角度下,随着中主应力系数的增加,临界应力比均呈降低趋势,相应的峰值剪切强度减小;在主应力轴旋转角度为0°时,中主应力系数为0.25和0.50的试样均出现了轻微的应变局部化现象,剪应力在达到峰值后呈逐渐降低的趋势;在主应力轴旋转角度为90°时,中主应力系数为0.50和0.75的试样所对应的状态为内外压不等的非轴对称拉伸状态,二者的峰值剪切强度比较接近,而中主应力系数为1.00的试样对应的为内外压相等的轴对称拉伸状态,其峰值剪切强度相比前二者降低了25%;在内外压相等的加载条件下,主应力轴旋转角度由0°增加为90°的同时,中主应力系数由0增加为1.00,试样破坏时对应的临界应力比与不排水剪切强度均逐渐降低。

References

[1]  ZDRAVKOVIC’ L, POTTS D M, HIGHT D W. The effect of strength anisotropy on the behaviour of embankments on soft ground[J]. Géotechnique, 2002, 52(6): 447-457.
[2]  沈 扬,周 建,张金良,等.主应力轴循环旋转下原状软黏土临界性状研究[J].浙江大学学报:工学版,2008,42(1):77-82.SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al. Critical properties of intact soft clay under cyclic principal stress rotation[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(1): 77-82.(in Chinese)
[3]  孙 红,袁聚云,赵锡宏.软土的真三轴试验研究[J].水利学报,2002(12):74-78.SUN Hong, YUAN Ju-yun, ZHAO Xi-hong. Study on soft soil by the true triaxial tests [J]. Journal of Hydraulic Engineering, 2002(12): 74-78.(in Chinese)
[4]  HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383.
[5]  沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996(1):27-33.SHEN Rui-fu, WANG Hong-jin, ZHOU Jing-xing. Dynamic strength of sand under cyclic rotation of principal stress directions[J]. Journal of Hydraulic Engineering, 1996(1): 27-33.(in Chinese)
[6]  HONG W P, LADE P V. Strain increment and stress directions in torsion shear tests[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1388-1401.
[7]  LIN H, PENUMADU D. Experimental investigation on principal stress rotation in Kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 633-642.
[8]  KANDASAMI R K, MURTHY T G. Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands[J]. Granular Matter, 2015, 17(2): 217-230.
[9]  ZDRAVKOVIC’ L, JARDINE R J. The effect on anisotropy of rotating the principal stress axes during consolidation[J].Géotechnique, 2001, 51(1): 69-83.
[10]  ZDRAVKOVIC’ L, JARDINE R J. Undrained anisotropy of K0-consolidated silt[J]. Canadian Geotechnique, 2000, 37(1): 178-200.
[11]  ZDRAVKOVIC’ L, JARDINE R J. Some anisotropic stiffness characteristics of a silt under general stress conditions[J]. Géotechnique, 1997, 47(3): 407-437.
[12]  MINH N A. An investigation of the anisotropic stress-strain-strength characteristics of Eocene clay[D]. London: Imperial College London, 2006.
[13]  NISHIMURA S, MINH N A, JARDINE R J. Shear strength anisotropy of natural London clay[J]. Géotechnique, 2007, 57(1): 49-62.
[14]  SYMES M J, GENS A, HIGHT D W. Drained principal stress rotation in saturated sand[J]. Géotechnique, 1988, 38(1): 59-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133