全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

悬索桥主缆和短吊杆轴力计算方法

, PP. 26-33

Keywords: 桥梁工程,悬索桥,主缆轴力,短吊杆轴力,平衡方程,节点平衡法,比拟法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决短吊杆轴力难以用频率法确定的问题,提出了确定悬索桥主缆和短吊杆轴力的节点平衡法和比拟法。节点平衡法以吊点为分析对象建立以主缆轴力为未知量的超定平衡方程组,从而获取主缆轴力的最小二乘解,并进一步确定短吊杆轴力。比拟法基于长吊杆轴力与简支梁弯矩间关系,建立主缆线形与长吊杆轴力的关系方程,最终确定主缆的水平张力与短吊杆的轴力。以贵州南盘江悬索桥为例,分别应用节点平衡法和比拟法得出主缆张力和吊杆轴力。计算结果表明2种方法的计算值与频率法实测值相近,节点平衡法所得主缆张力误差为-4.3%(上游)和3.1%(下游),比拟法所得主缆张力误差为-8.6%(上游)和-0.1%(下游);2种方法所得长吊杆轴力最大误差约为10%,上游吊杆轴力平均误差小于2%,下游吊杆轴力平均误差约为9%。可见,节点平衡法和比拟法是确定主缆和短吊杆轴力的有效方法。

References

[1]  张文明,葛耀君.三塔双主跨悬索桥动力特性精细化分析[J].中国公路学报,2014,27(2): 70-76.ZHANG Wen-ming, GE Yao-jun. Refinement analysis of dynamic characteristics of suspension bridge with triple towers and double main spans[J]. China Journal of Highway and Transport, 2014, 27(2): 70-76.(in Chinese)
[2]  韩万水,王 涛,李永庆,等.大跨钢桁架悬索桥有限元模型实用修正方法[J].交通运输工程学报,2011,11(5):18-27.HAN Wan-shui, WANG Tao, LI Yong-qing, et al. Practical updating method of finite element model for long-span steel truss suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 18-27.(in Chinese)
[3]  唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,25(1):87-91.TANG Mao-lin, QIANG Shi-zhong, SHEN Rui-li. Segmental catenary method of calculating the cable curve of suspension bridge[J]. Journal of the China Railway Society, 2003, 25(1): 87-91.(in Chinese)
[4]  齐东春,沈锐利,郭永成.悬索桥空间缆索线形的解析计算方法[J].武汉理工大学学报,2013,35(12):109-113,124.QI Dong-chun, SHEN Rui-li, GUO Yong-cheng. Analytical calculation method of main cable shape-finding of suspension bridge with spatial cables[J]. Journal of Wuhan University of Technology, 2013, 35(12): 109-113, 124.(in Chinese)
[5]  陈常松,陈政清,颜东煌.悬索桥主缆初始位形的悬链线方程精细迭代分析法[J].工程力学,2006,23(8):62-68.CHEN Chang-song, CHEN Zheng-qing, YAN Dong-huang. Accurate iteration method to calculate the initial states of main cables of suspension bridges[J]. Engineering Mechanics, 2006, 23(8): 62-68.(in Chinese)
[6]  王 达,李宇鹏,刘 扬.大跨度悬索桥锚跨索股张力精细化控制分析[J].中国公路学报,2014,27(1):51-56.WANG Da, LI Yu-peng, LIU Yang. Analysis of refinement control of anchor cable tension for long-span suspension bridge[J]. China Journal of Highway and Transport, 2014, 27(1): 51-56.(in Chinese)
[7]  陈常松,陈政清,颜东煌.柔索索力主频阶次误差及支承条件误差[J].交通运输工程学报,2004,4(4):17-20.CHEN Chang-song, CHEN Zheng-qing, YAN Dong-huang. Frequency number error and support condition of flexible cable tension[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 17-20.(in Chinese)
[8]  KIM B H, PARK T. Estimation of cable tension force using the frequency-based system identification method[J]. Journal of Sound and Vibration, 2007, 304(3-5): 660-676.
[9]  ZUI H, SHINKE T, NAMITA Y. Practical formulas for estimation of cable tension by vibration method[J]. Journal of Structural Engineering, 1996, 122(6): 651-656.
[10]  FANG Zhi, WANG Jian-qun. Practical formula for cable tension estimation by vibration method[J]. Journal of Bridge Engineering, 2012, 17(1): 161-164.
[11]  NAM H, NGHIA N T. Estimation of cable tension using measured natural frequencies[J]. Procedia Engineering, 2011, 14(11): 1510-1517.
[12]  PELGRIMS P, DE COOMAN M, PUERS R. Sensor and instrumentation for cable tension quantification[J]. Procedia Engineering, 2014, 87: 1473-1476.
[13]  GAO Jun-qi, SHI Bin, ZHANG Wei, et al. Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor[J]. Measurement, 2006, 39(5): 420-428.
[14]  CHO S, YIM J, SHIN S W. Comparative field study of cable tension measurement for a cable-stayed bridge[J]. Journal of Bridge Engineering, 2013, 18(8): 748-757.
[15]  余加勇,邵旭东,孟晓林,等.基于自动型全站仪的桥梁结构动态监测试验[J].中国公路学报,2014,27(10):55-63,92.YU Jia-yong, SHAO Xu-dong, MENG Xiao-lin, et al. Experiment of dynamic monitoring of bridge structures using robotic total station[J]. China Journal of Highway and Transport,2014, 27(10): 55-63, 92.(in Chinese)
[16]  KIM S W, KIM N S. Dynamic characteristics of suspension bridge hanger cables using digital image processing[J]. NDT&E International, 2013, 59(7): 25-33.
[17]  ZHENG G, KO J M, NI Y Q. Multimode-based evaluation of cable tension force in cable-supported bridges[J]. Proceedings of SPIE, 2001, 4330: 511-522.
[18]  KANGAS S, HELMICKI A, HUNT V, et al. Cable-stayed bridges: case study for ambient vibration-based cable tension estimation[J]. Journal of Bridge Engineering, 2012, 17(6): 839-846.
[19]  郭 福,乔卫华.悬索桥基准索股架设若干影响因素分析与控制[J].筑路机械与施工机械化,2014,31(3):71-73.GUO Fu, QIAO Wei-hua. Analysis and control of factors affecting erection of datum strand of suspension bridge[J]. Road Machinery and Construction Mechanization, 2014, 31(3): 71-73.(in Chinese)
[20]  王建飞.拱桥吊杆索力的振动法测量[D].哈尔滨:哈尔滨工业大学,2012.WANG Jian-fei. Vibration method measurement for cable tension of arch bridge[D]. Harbin: Harbin Institute of Technology, 2012.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133