全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

喷水推进轴流泵三元水力设计

, PP. 42-49

Keywords: 船舶工程,喷水推进轴流泵,计算流体动力学,三元水力设计方法,环量,叶片数,空化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于环量的三元设计方法和计算流体动力学,研究了叶片数、叶片流向环量中心位置与叶片出口边环量对叶轮性能的影响,分析了导叶进口边和出口边环量对喷水推进轴流泵性能的影响,通过合理地控制这些因素,设计了一种效率高、空化性能好的喷水推进轴流泵。在流量为56.2m3?s-1时,泵的扬程为35.9m,功率为21465kW,效率为92.3%,可见,设计泵的性能优良,效率高。研究结果表明增加叶片数能够有效减小单叶片转矩,当叶片数从5个增加到7个时,单叶片转矩减小了21%;叶片环量中心靠近出口边,有利于提高叶轮的空化性能,当环量中心从叶片弦长的0.3处移动到0.7处时,叶轮吸力面空化面积减小80%;叶轮出口边环量斜率会影响叶轮效率,当斜率分别为0.8、1.0和1.2时,叶轮效率逐步提高;当出口边环量从0.40增加到0.50时,叶轮的扬程和功率近似线性增加,扬程增加19.9%,功率增加19.5%;随着导叶进口边环量与出口边环量的比值的增大,泵效率先增大后减小,当比值为0.93时,泵的效率最高;导叶出口边环量分布会影响泵的效率、出口不均匀度和出口周向动能,当导叶出口边环量为-0.05时,泵的效率最高,出口不均匀度和出口周向动能最小。

References

[1]  ALLISON J. Marine waterjet propulsion[J]. SNAME Transactions, 1993, 101: 275-335.
[2]  WESSEL J. Waterjet propulsion for a 3 500 ton corvette from BLOHM+VOSS[C]∥RINA. International Conference on Waterjet Propulsion Ⅳ. London: The Royal Institution of Naval Architects, 2004: 18-26.
[3]  GILES W, DINHAM-PEREN T, AMARATUNGA S, et al. The advanced waterjet: propulsor performance and effect on ship design[C]∥IMarEST. 10th International Naval Engineering Conference and Exhibition. London: IMarEST, 2010: 1-19.
[4]  KERREBROCK J L. Principles of Turbomachinery[M]. London: The MIT Press, 1996.
[5]  ALLISION J L, JIANG C, STRICKER J G. Modern tools for waterjet pump design and recent advance in the field[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Architects, 1998: 23-34.
[6]  LAVIS D R, FORSTELL B G, PURNEL J G. Compact waterjets for high-speed ships[J]. Ships and Offshore Structures, 2007, 2(2): 115-125.
[7]  PURNELL J. Waterjet self-propulsion model test for application to a high-speed sealift ship[R]. Severna Park: CDI Marine Company, 2007.
[8]  MICHAEL T J, SCHROEDER S D, BECNEL A J. Design of the ONR AxWJ-2 axial flow waterjet pump[R]. Bethesda: Naval Surface Warfare Center, 2008.
[9]  SCHROEDER S, KIM S E, JASAK H. Towards predicting performance of an axial flow waterjet including the effects of cavitation and thrust breakdown[C]∥ICMIA. Proceedings of the First International Symposium on Marine Propulsors. Brussels: ICMIA, 2009: 387-394.
[10]  ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
[11]  ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36.
[12]  ZANGENEH M, DANESHKHAH K, DACOSTA B. A multi-objective automatic optimization strategy for design of waterjet pumps[C]∥RINA. International Conference on Waterjet Propulsion Ⅴ. London: The Royal Institution of Naval Architects, 2008: 27-32.
[13]  罗兴琦,陈乃祥,林汝长.混流式转轮的准三维设计[J].水利学报,1996(10):18-21,26.LUO Xing-qi, CHEN Nai-xiang, LIN Ru-chang. A quasi three-dimensional design method for francis runner[J]. Journal of Hydraulic Engineering, 1996(10): 18-21, 26.(in Chinese)
[14]  彭国义,罗兴琦,郭齐胜,等.轴流式水轮机转轮的准三维有旋流动设计[J].水利学报,1996(10):10-17.PENG Guo-yi, LUO Xing-qi, GUO Qi-sheng, et al. A quasi three-dimensional inverse method for Kaplan turbine runner in rotational flow[J]. Journal of Hydraulic Engineering, 1996(10): 10-17.(in Chinese)
[15]  曹玉良,王永生,靳栓宝.浸没式喷水推进泵设计及装船后性能预报[J].西安交通大学学报,2014,48(5):96-101.CAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Design of submerged waterjet pump and performance prediction after installation[J]. Journal of Xi’an Jiaotong University, 2014, 48(5): 96-101.(in Chinese)
[16]  靳栓宝,王永生,丁江明,等.混流式喷水推进泵三元设计及数值试验[J].哈尔滨工程大学学报,2012,33(10):1223-1227.JIN Shuan-bao, WANG Yong-sheng, DING Jiang-ming, et al. Three-dimensional design and numerical experiment of mixed-flow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227.(in Chinese)
[17]  靳栓宝,王永生.基于三元设计及数值试验轴流泵抗空化性能[J].排灌机械工程学报,2013,31(9):763-767.JIN Shuan-bao, WANG Yong-sheng. 3D design of axial-flow pump and numerical prediction of its cavitation performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(9): 763-767.(in Chinese)
[18]  TAYLOR T E, KERWIN J E, SCHERER J O. Waterjet pump design and analysis using a coupled lifting-surface and RANSprocedure[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Arichtects, 1998: 156-172.
[19]  HUNTSMAN I, HOTHERSALL R. Development of quasi 3D design methods and 3D flow solvers for the hrdrodynamic design of waterjets[C]∥RINA. International Conference on Waterjet Propulsion Ⅲ. London: The Royal Institution of Naval Arichtects, 2001: 213-222.
[20]  MOON I S, KIM K S, LEE C S. Blade tip gap flow model for performance analysis of waterjet propulsor[C]∥IABEM. International Association for Boundary Element Methods(IABEM)2002 Symposium. Austin: IABEM, 2002: 1-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133