全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2014 

252kV分支母线结构的改进设计

, PP. 112-115

Keywords: 252kV母线,静电场模块,工频耐压,雷电冲击电压

Full-Text   Cite this paper   Add to My Lib

Abstract:

对252kV分支母线结构提出了改进设计,并通过ANSYS商用电场计算软件对更改后的结构进行了电场计算分析。改进后的252kV母线结构在充气压力为0.3MPa(表计)下,成功耐受住工频电压460kV/1min和雷电冲击电压1050kV,正负极性各15次的试验。通过该次改进,提高了252kV母线的绝缘裕度,并可降低企业的生产成本。

References

[1]  BINACHI N, BOLOGNANI S. Design optimization of electric motors by genetic algorithms[J]. IEE Proc.-Electr. Power Appl., 1998, 145(5): 475-483.
[2]  孔明礼,胡仁喜,崔海蓉.ANSYS 10.0 电磁学有限元分析实例指导教程[M]. 北京:机械工业出版社,2007. KONG Mingli, HU Renxi, CUI Hairong. ANSYS 10.0 electromagnetic finite element analysis examples tutorial[M]. Beijing: Machinery Industry Press, 2007.
[3]  WIEGART N, NIEMEYER L, PINNEKAMP F,et al. Inhomogeneous field breakdown in GIS-the prediction of breakdown probabilities and voltages. Part I: Overview of a theory for inhomogeneous field breakdown in SF6[J]. IEEE Trans. on Power Delivery, 1988(3):923.
[4]  GB 1984―2003 高压交流断路器[S].2003. GB 1984―2003. High-voltage alternating-current circuit-breakers[S].2003.
[5]  GB 11022―2011 高压开关设备和控制设备标准的共用技术要求[S].2011. GB 11022-2011 Common specifications for high-voltage switchgear and controlgear standards[S].2011.
[6]  GB 7674―2008 额定电压72.5 kV及以上气体绝缘金属封闭开关设备[S].2008. GB 7674―2008 Gas-insulated metal-enclosed switchgear for rated voltages of 72.5 kV and above[S].2008.
[7]  吴怀权.高压开关行业共性技术发展综述[J]. 电器工业,2009(7):34-38. WU Huaiquan. Summary of development of high-voltage switch industry common technology[J]. Electrical Equipment Industry, 2009(7):34-38.
[8]  中国电器工业协会高压开关分会.我国高压开关行业发展综述[J]. 电器工业,2009(2):6-11. China Electrical Equipment Industrial Association of High Voltage Switch Branch. Review of the development of China high voltage switch[J]. Electrical Equipment Industry, 2009(2):6-11.
[9]  盛剑霓.工程电磁场数值分析[M]. 西安:西安交通大学出版社,1991. SHENG Jianni. Engineering electromagnetic field numerical analysis[M]. Xi’an: Xi’an Jiaotong University Press, 1991.
[10]  CHOI J H, KIM T H, JANG K B, et al. Geometric and electrical optimization design of SR motor based on progressive quadratic response surface method[J]. IEEE Trans. on Magnetics, 2003, 39(5): 3241-3242.
[11]  LIU Qinghua, JABBAR M A, KHAMBADKONE A M. Response surface methodology based design optimization of interior permanent magnet synchronous motors for wide-speed operation[J]. Power Electronics, Machines and Drives, 2004(2): 546-551.
[12]  黎 斌.SF6高压电器设计[M]. 北京:机械工业出版社,2007. LI Bin. SF6 high-voltage apparatus design[M]. Beijing: Machinery Industry Press, 2007.
[13]  朱德恒,严 璋. 高电压绝缘[M]. 北京:清华大学出版社,1922. ZHU Deheng, YAN Zhang. High-voltage insulation[M]. Beijing: Tsinghua University Press, 1992.
[14]  徐国政. 高压断路器原理和应用[M]. 北京:清华大学出版社,2003. XU Guozheng. Principle and application of high voltage circuit breaker[M]. Beijing: Tsinghua University Press, 2003.
[15]  NISHIKAWA S, TUJI K, HIROSE T, et al. An investigation of allowable electrical stress of SF6 GCB[C]//Proc. of the Joint Conference of Hokuriku Chapters of IEEJ.[S.l.]:IEEE, 2001: 59.
[16]  NISHIKAWA S, OSAWA N, YOSHJOKA Y. An investigation of optimum design method of shield electrode models[C]//The Papers of Joint Meeting on Electrical Discharge, Switching and Protecting Engineering and Frontier Technology and Engineering.[S.l.]:IEEE, 2002:59-60.
[17]  ENDO F. Analytical prediction of transient berakdown characteristics of SF6 gas circuit breakers[J]. IEEE Trans. on Power Delivery, 1989,4(3):1731-1737.
[18]  LANDRY M,STJEAN G, JEANJEAN R,et al. Dielectric withstand and breaking capacity of SFs circuit breakers at low temperature[J]. IEEE Transactions on Power Delivery, 1988, 3(3):1029-1035.
[19]  BOECK W. SF6 insulation breakdown behavior under impulse stress[M]. New York:Plenum Press, 1979.
[20]  NITTA T,SHIBUYA Y. Electrical breakdown of long gap in sulfur hexafluoride[J]. IEEE Transactions on Power Apparatus, 1971(PAS-90):1065-1071.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133