全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2014 

真空开关电弧开断过程的数值仿真方法研究进展

, PP. 131-135

Keywords: 真空开关,真空电弧,开断过程,数值仿真,磁流体动力学模型,粒子模拟,混合模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着真空开关的广泛应用,对真空电弧的研究愈显重要。由于真空电弧等离子体并未处于局部热力学平衡态,且磁场和触头起关键作用,真空开关开断过程的数值仿真和SF6开关相比尚不成熟,但近年来随着真空电弧理论的不断完善和计算机计算能力的大幅提升而获得了迅速发展。笔者综述了磁流体动力学(MHD)模型、粒子模拟结合蒙特卡罗碰撞(PIC-MCC)方法、混合模型、阳极热模型和解析模型在真空开关电弧开断过程不同阶段数值仿真中的应用现状,并提出了电流零区、电极材料、极间等离子体不同区域相互作用、PIC-MCC加速、高压大容量和重燃机制等6个今后有待深入研究的方向。

References

[1]  SHKOLNIK S M. Secondary plasma in the gap of high- current vacuum arc:Origin and resulting effects[J]. IEEE Transactions on Plasma Science,2003,31(5):832-846.
[2]  SCHULMAN M B,SLADE P G,HEBERLEIN J V R. Effect of an axial magnetic field upon the development of the vacuum arc between opening electric contacts[J]. IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1993,16(2):180-189.
[3]  WANG Z,GENG Y,LIU Z. Stepwise behavior of free recovery processes after diffused vacuum arc extinction[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(2):582-590.
[4]  马腾才,胡希伟,陈银华. 等离子体物理原理[M]. 合肥:中国科学技术大学出版社,2012. MA Tengcai,HU Xiwei,CHEN Yinhua. Plasma physics principle[M]. Hefei:University of Science and Technology of China Press,2012.
[5]  SCHELLEKENS H. The high- current vacuum arc in an axial magnetic field:an experimental investigation[J]. J. Appl. Phys.,1983,54(1):144-149.
[6]  WANG L,JIA S,SHI Z,et al. Numerical simulation of vacuum arc under different axial magnetic fields[J]. J. Phys. D:Appl. Phys.,2005,38(7):1034-1041.
[7]  袁忠才,时家明,黄 勇,等. 低温等离子体数值模拟方法的分析比较[J]. 核聚变与等离子体物理,2008,28(3):278-284. YUAN Zhongcai,SHI Jiaming,HUANG Yong,et al. Analysis and comparison of numerical simulation methods of low temperature plasma[J]. Nuclear Fusion and Plasma Physics,2008,28(3):278-284.
[8]  BIRDSALL C K. Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC[J]. IEEE Transactions on Plasma Science,1991,19(2):65-85.
[9]  WANG Z,GENG Y,LIU Z. Collision effects on sheath development after interrupting a vacuum arc[C]// Proceedings of 1st International Conference on Electric Power Equipment-Switching Technology. Xi’an,China:IEEE,2011:27-30.
[10]  TAKAHASHI S,ARAI K,MORIMIYA O,et al. A PIC- MCC simulation of the high-voltage interruption ability of a vacuum interrupter[J]. IEEE Transactions on Plasma Science,2007,35(9):912-919.
[11]  陆全明,王 水. 二维混合模拟方法及应用[J]. 计算物理,2002,19(3):208-212. LU Quanming,WANG Shui. 2D hybrid method and its applications[J]. Computational Physics,2002,19(3):208-212.
[12]  王立军,贾申利,刘 宇,等. 纵磁下真空电弧阳极热过程的仿真[J]. 电工技术学报,2011,26(3):65-73. WANG Lijun,JIA Shenli,LIU Yu,et al. Simulation of anode thermal process in vacuum arc under axial magnetic field[J]. Transactions of China Electrotechnical Society,2011,26(3):65-73.
[13]  卫 鹏,张俊芳.基于模糊控制的新型永磁开关磁阻电机控制系统研究与设计[J]. 电网与清洁能源,2013(7):6-11. WEI Peng,ZHANG Junfang. Research and design of the permanent switched reluctance motor control system based on fuzzy control[J]. Power System and Clean Energy,2013(7):6-11.
[14]  张 廷,许思峰. GIS开关不同电弧模型对快速暂态过电压的影响[J]. 陕西电力,2012,40(12):82-85. ZHANG Ting,XU Sifeng.Probe into influence of different electric arc model for gis switching on VFTO[J]. Shaanxi Elecetric Power,2012,40(12):82-85.
[15]  闫荣妮. 纵向磁场真空电弧等离子体的仿真研究[D]. 沈阳:沈阳工业大学,2011. YAN Rongni. Simulation research of axial magnetic field vacuum arc plasma[D]. Shenyang:Shenyang University of Technology,2011.
[16]  BOXMAN R L. Magnetic constriction effects in high- current vacuum arcs prior to the release of anode vapor[J]. J. Appl. Phys.,1977,48(6):2338-2345.
[17]  IZRAELI I,BOXMAN R L,GOLDSMITH S. The current distribution and the magnetic pressure profile in a vacuum arc subject to an axial magnetic field[J]. IEEE Transactions on Plasma Science,1987,PS-15(5):502-505.
[18]  KEIDAR M, BEILIS I, BOXMAN R L, et al. 2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field[J]. J. Phys. D: Appl. Phys., 1996,29(7):1973-1983.
[19]  BEILIS I I,KEIDAR M,BOXMAN R L,et al. Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc[J]. J. Appl. Phys.,1998,83(2):709-717.
[20]  SCHADE E,SHMELEV D L. Numerical simulation of high- current vacuum arcs with an external axial magnetic field[J]. IEEE Transactions on Plasma Science,2003,31(5):890-901.
[21]  SCHADE E,SHMELEV D L. Numerical simulation of high-current vacuum arcs in external magnetic fields taking into account essential anode evaporation[C]// Proceedings of XXIst International Symposium on Discharges and Electrical Insulation in Vacuum. Yalta,Crimea:IEEE,2004:411-414.
[22]  王立军,贾申利,史宗谦,等. 真空电弧磁流体动力学模型与仿真研究[J]. 中国电机工程学报,2005,25(4):113-118. WANG Lijun,JIA Shenli,SHI Zongqian,et al. MHD model and simulation research of vacuum arc[J]. Proceedings of the CSEE,2005,25(4):113-118.
[23]  WANG L,YANG D,JIA S,et al. Simulation of vacuum arc characteristics at different moments under power-frequency current[J]. Plasma Science and Technology,2012,14(3):227-234.
[24]  ZHANG L,JIA S,WANG L,et al. Simulation of vacuum arc characteristics under four kinds of axial magnetic fields and comparison with experimental results[J]. Plasma Science and Technology,2011,13(4):462-469.
[25]  WANG L,JIA S,LIU K,et al. Numerical simulation of high- current vacuum arc characteristics under combined action of axial magnetic field and external magnetic field from bus bar[J]. Phys. Plasma,2009,16(10):103502.
[26]  JIA S,ZHANG L,WANG L,et al. Numerical simulation of high-current vacuum arcs under axial magnetic fields with consideration of current density distribution at cathode[J]. IEEE Transactions on Plasma Science,2011,39(11):3233-3243.
[27]  WANG L,JIA S,SHI Z,et al. Numerical simulation of low current vacuum arc supersonic flow[J]. Plasma Science and Technology,2007,9(6):661-665.
[28]  WENZEL T, LEIBFRIED T. Vacuum circuit breakers in flexible AC transmission systems[J]. IEEE Transactions on Power Delivery, 2012,27(1):236-244.
[29]  SCHADE E. Physics of high-current interruption of vacuum circuit breakers[J]. IEEE Transactions on Plasma Science,2005,33(5):1564-1575.
[30]  王季梅. 真空开关技术与应用[M]. 北京:机械工业出版社,2008. WANG Jimei. Vacuum switch technology and its application[M]. Beijing:China Machine Press,2008.
[31]  DULLNI E,SCHADE E,SHANG W. Vacuum arcs driven by cross-magnetic fields(RMF)[J]. IEEE Transactions on Plasma Science,2003,31(5):902-908.
[32]  SCHULMAN M B,SCHELLEKENS H. Visualization and characterization of high-current diffuse vacuum arcs on axial magnetic field contacts[J]. IEEE Transactions on Plasma Science,2000,28(2):443-452.
[33]  WANG L,JIA S,YANG D,et al. Modelling and simulation of anode activity in high-current vacuum arc[J]. J. Phys. D:Appl. Phys.,2009,42(14):145203.
[34]  WATANABE K,KANEKO E,YANABU S. Technological progress of axial magnetic field vacuum interrupters[J]. IEEE Transactions on Plasma Science,1997,25(4):609-616.
[35]  WANG L,ZHOU X,WANG H,et al. Anode activity in a high-current vacuum arc:three-dimensional modeling and simulation[J]. IEEE Transactions on Plasma Science,2012,40(9):2237-2246.
[36]  BOXMAN R L,GOLDSMITH S. Model of the anode region in a uniform multi-cathode-spot vacuum arc[J]. J. Appl. Phys.,1983,54(2):592-602.
[37]  尚文凯,王季梅. 大电流真空电弧收缩现象的研究[J]. 中国电机工程学报,1989,9(2):34-41. SHANG Wenkai,WANG Jimei. Constriction phenomena of high current vacuum arcs[J]. Proceedings of the CSEE,1989,9(2):34-41.
[38]  HANTZSCHE E. A hydrodynamic model of vacuum arc plasmas[J]. IEEE Transactions on Plasma Science,1992,20(1):34-41.
[39]  HANTZSCHE E. Two-dimensional models of expanding vacuum arc plasmas[J]. IEEE Transactions on Plasma Science,1995,23(6):893-898.
[40]  王 毅,王季梅. 真空电弧等离子体弧柱现象模型分析[J]. 中国电机工程学报,1992,12(5):53-57. WANG Yi,WANG Jimei. A column model of high current vacuum arcs[J]. Proceedings of the CSEE,1992,12(5):53-57.
[41]  LEUSENKAMP M B J. Vacuum interrupter model based on breaking tests[J]. IEEE Transactions on Plasma Science,1999,27(4):969-976.
[42]  ZHANG L,JIA S,WANG L,et al. Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology,2012,14(4):285-292.
[43]  LONDER Y I,ULYANOV K N. Mathematical model of the vacuum arc in an external axial magnetic field[J]. IEEE Transactions on Plasma Science,2007,35(4):897-904.
[44]  DELACHAUX T,FRITZ O,GENTSCH D,et al. Numerical simulation of a moving high-current vacuum arc driven by a transverse magnetic field(TMF)[J]. IEEE Transactions on Plasma Science,2007,35(4):905-911.
[45]  GELLERT B,EGLI W. Melting of copper by an intense and pulsed heat source[J]. J. Phys. D:Appl. Phys.,1988,21(12):1721-1726.
[46]  ROWE S,SARRAILH P,GARRIGUES L,et al. Post-arc period of vacuum circuit breakers:new 2D simulation and experimental results[C]// Proceedings of XXIVth International Symposium on Discharges and Electrical Insulation in Vacuum. Braunschweig,Germany:IEEE,2010:423-426.
[47]  SARRAILH P,GARRIGUES L,HAGELAAR G J M,et al. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc[J]. J. Phys. D:Appl. Phys.,2008,41(1):015203.
[48]  SARRAILH P,GARRIGUES L,HAGELAAR G J M,et al. Two-dimensional simulation of the post-arc phase of a vacuum circuit breaker[J]. IEEE Transactions on Plasma Science,2008,36(4):1046-1047.
[49]  ANDREWS J G,VAREY R H. Sheath growth in a low pressure plasma[J]. Phys. Fluids,1971,14(2): 339-343.
[50]  CHILDS S E, GREENWOOD A N. A model for DC interruption in diffuse vacuum arcs[J]. IEEE Transactions on Plasma Science,1980,8(4):289-294.
[51]  MODY H K, GREENWOOD A N. An analytical and experimental study of post-arc phenomena in vacuum[J]. IEEE Transactions on Plasma Science,1986,14(4): 503-514.
[52]  DULLNI E, SCHADE E, GELLERT B. Dielectric recovery of vacuum arcs after strong anode spot activity[J]. IEEE Transactions on Plasma Science, 1987,15(5):538-544.
[53]  GLINKOWSKI M T, STOVING P. Numerical modeling of vacuum arc interruption based on the simplified plasma equations[J]. IEEE Transactions on Magnetics, 1995,31(3):1924-1927.
[54]  GLINKOWSKI M T. Building a mathematical model of vacuum arc interruption-parameter optimization[C]//Proceedings of XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum. Berkeley, USA:IEEE, 1996:365-370.
[55]  KAUMANNS J. Measurements and modeling in the current zero region of vacuum circuit breakers for high current interruption[J]. IEEE Transactions on Plasma Science, 1997,25(4): 632-636.
[56]  LANEN E P A, SMEETS R P P, POPOV M, et al. Vacuum circuit breaker postarc current modeling based on the theory of Langmuir probes[J]. IEEE Transactions on Plasma Science, 2007,35(4):925-932.
[57]  RICH J A, FARRALL G A. Vacuum arc recovery phenomena[J]. Proceedings of the IEEE, 1964,52(11):1293-1301.
[58]  王季梅. 真空电弧理论研究及其测试[M]. 西安: 西安交通大学出版社, 1993. WANG Jimei. Vacuum arc theory research and test[M]. Xi’an: Xi’an Jiaotong University Press, 1993.
[59]  张华赢,杨兰均,李良书,等. 投切电容器组专用真空断路器性能研究[J]. 电力电容器与无功补偿,2011,32(3):38-44. ZHANG Huaying,YANG Lanjun,LI Liangshu,et al. Study on the performance of special vacuum breaker for switching capacitor banks[J]. Power Capacitor & Reactive Power Compensation,2011,32(3):38-44.
[60]  许沛丰,高军委,张予洛,等.对断路器电容器电容及介损测量预试方法的探讨[J]. 电力电容器, 2007,28(4):53-56. XUE Peifeng,GAO Junwei,ZHANG Yuluo,et al. Discussion about the way to measure capacitance and dielectric loss of circuit breaker[J]. Power Capacitor,2007,28(4):53-56.
[61]  李志兵,许沛丰,刘华伟,等.断路器电容器介损随电压变化关系研究[J]. 电力电容器,2007,28(6):26-30. LI Zhibing,XU Peifeng,LIU Huawei,et al. Research on dielectric loss variation of circuit- breaker capacitors with voltage[J]. Power Capacitor,2007,28(6):26-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133