全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

可见光图像颜色特征与支持向量机相结合的绝缘子污秽状态识别方法

, PP. 1-7

Keywords: 绝缘子,污秽等级,可见光图像,改进种子区域生长法,HSV,支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

绝缘子污闪事故严重威胁着电力系统的安全运行,高压绝缘子污秽等级的准确识别是防污闪的重要研究内容。笔者提出了一种基于绝缘子可见光图像颜色特征和支持向量机技术,通过建立污秽等级与可见光图像颜色特征值的映射关系,实现绝缘子污秽状态识别的方法。以深圳供电局多个变电站不同污秽度红色陶瓷绝缘子数据为基础,采用改进种子区域生长法分割得到绝缘子盘面区域,提取RGB和HSV颜色空间36种特征,依据Fisher判据,筛选得到能表征绝缘子盘面污秽程度的S均值和S中值;设计支持向量机多值分类器,进行污秽等级划分。实验结果表明,该方法的绝缘子污秽等级准确率达96.67%,实现污秽状态的准确监测,为绝缘子污秽等级识别提供新思路。

References

[1]  宿志一,李庆峰.我国电网防污闪措施的回顾和总结[J].电网技术,2010,34(12):124-130. SU Zhiyi, LI Qingfeng. Historical review and summary on measures against pollution flashover occurred in power grids in China[J]. Power System Technology,2010,34(12):124-130.
[2]  腾 云,田 阳,李 辉.绝缘子等值盐密的组合预测模型[J]. 高电压技术,2013,39(6):1488-1493. TENG Yun, TIAN Yang, LI Hui. Combined equivalent salt deposit density prediction model of insulator surface contamination proceedings of the CSEE[J]. High Vo1tage Engineering,2013,39(6): 1488-1493.
[3]  梁曦东,张铁博,高岩峰.硅橡胶绝缘子污秽有效等值盐密及测量方法[J]. 高电压技术,2013,39(12):3044-3051. LIANG Xidong,ZHANG Tiebo, GAO Yanfeng. Concept and test method of effective equivalent salt deposit density for silicone rubber composite insulators[J]. High Voltage Engineering,2013, 39(12): 3044-3051.
[4]  李和明,高 强,吕旭东.基于微波辐射理论的绝缘子污秽等值盐密/灰密检测模型[J].中国电机工程学报,2011,31(7):132-138. LI Heming, GAO Qiang, LYU Xudong. Detection model of ESDD and NSDD of insulators contamination based on microwave radiation theory[J]. Proceedings of the CSEE,2011,31(7):132-138.
[5]  蒋兴良,赵世华,毕茂强,等.污秽绝缘子闪络特性与泄漏电流特性研究[J]. 中国电机工程学报,2013,33(31):220-226. JIANG Xingliang, ZHAO Shihua, BI Maoqiang, et al. Research on flashover performance and leakage current performance of polluted insulators[J]. Proceedings of the CSEE, 2013, 33(31): 220-226.
[6]  熊 兰,刘 钰,姚树友,等.污秽绝缘子紫外在线监测系统[J]. 电工技术学报,2010,25(7):186-191. XIONG Lan,LIU Yu,YAO Shuyou,et al. Ultraviolet on-line monitoring system for contaminated insulators[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 186-191.
[7]  汪金刚,林 伟,何 为,等.基于紫外脉冲法与SMS的绝缘子污秽实时监测系统[J].电力系统保护与控制,2011,39(3):95-99. WANG Jingang, LIN Wei, HE Wei,et al. Real-time monitoring system for insulator surface based on ultra-violet pulse detection and SMS[J]. Power System Protection and Control,2011,39(3): 95-99.
[8]  李自品,舒乃秋,李红玲,等.绝缘子污秽放电的声发射核主成分诊断法[J]. 高电压技术,2012,38(11):3008-3014. LI Zipin,SHU Naiqiu,LI Hongling,et al. Acoustic emission diagnosis method of insulator’s pollution discharge based on kernel principle component analysis[J]. High Voltage Engineering,2012, 38(11): 3008-3014.
[9]  VITELI M.Temperature distribution along outdoor insulator subjected to different pollution levels[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(3):416-423.
[10]  何洪英.基于红外热像及人工智能的绝缘子污秽等级识别方法研究[D]. 湖南:湖南大学,2006. HE Hongying. Research of insulator contamination grades detection method based on infrared image and artificial intelligence[D]. Hunan: Hunan University, 2006.
[11]  秦绪佳,王慧玲,杜轶诚,等.HSV色彩空间的Retinex结构光图像增强算法[J]. 计算机辅助设计与图形学学报,2013,25(4):488-493. QIN Xujia, WAGN Huiling, DU Yicheng, et al. Structured light image enhancement algorithm based on retinex HSV color space[J]. Journal of Computer-aid Design & Computer Graphics, 2013, 25(4): 488-493.
[12]  刘战杰,马儒宁,邹国平,等.一种新的基于区域生长的彩色图像分割算法[J]. 山东大学学报(理学版),2010,45(7):76-80. LIU Zhanjie,MA Runing,ZOU Guoping,et al. An algorithm for color image segmentation based on region growth[J]. Journal of Shandong University(Natural Science),2010,45(7):76-80.
[13]  阮秋琦.数字图像处理学[M]. 北京:电子工业出版社,2008.
[14]  IWAI K, HASE Y, NAKAMURA E, et al. Development of a new apparatus for contamination measurement of overhead transmission line insulators[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1412-1417.
[15]  LI Wenkai,GUO Qinghua,ELKAN C.A positive and unlabeled learning algorithm for one-class classification of remote-sensing data[J]. IEEE Trans. on Geoscience and Remote Sensing,2011,49(2):717-725.
[16]  KANG I,JEONG M K,KONG D.A differentiated one-class classification method with applications to intrusion detection[J]. Expert Systems with Applications,2012,39(4):3899-3905.
[17]  PAUWELS E J,AMBEKAR O.One class classification for anomaly detection:support vector data description revisited[C]//Proceedings of the 11th International Conference on Advances in Data Mining:Applications and Theoretical Aspects.Amsterdam, Netherlands:IEEE,2011:25-39.
[18]  MATLAB中文论坛.MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社,2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133