全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

基于灰色TOPSIS和DGA的变压器状态预测

DOI: 10.13296/j.1001-1609.hva.2015.09.007, PP. 39-43

Keywords: 灰色预测, 理想点解理论(TOPSIS), 变压器油中溶解气体分析(DGA), 变压器, 状态维修

Full-Text   Cite this paper   Add to My Lib

Abstract:

以灰色预测和理想点解理论(TOPSIS)为基础,研究基于油中溶解气体体积分数的变压器状态预测及其应用。该方法不同于目前单纯依据数学算法预测油中溶解气体含量的方法,而是从系统的角度综合考虑各特征参数及三比值规则,对故障状态贴近度进行预测。首先根据理想点解法计算各期油中气体体积分数三比值的故障贴近度,以此作为变压器三比值状态信息,然后根据灰色GM(1,1)模型,对变压器三比值故障状态贴进度发展趋势进行预测,最后得到其故障的贴近度,反应了变压器故障状态的发展趋势,对状态维修具有较直观的参考意义。实例数据分析验证了该预测方法的有效性。

References

[1]  贾 嵘,徐其惠,李 辉,等.基于邻域粒子群优化神经网络的变压器故障诊断[J]. 高压电器,2008,44(1):8?鄄10. JIA Rong,XU Qihui,LI Hui,et al. Power transformer fault diagnosis via neural network based on particle swarm optimization with neighborhood operator[J]. High Voltage Apparatus,2008,44(1): 8?鄄10.
[2]  韩筛根,郭献清,汤 茜,等.有载调容变压器运行中最佳容量调节点分析和计算[J]. 变压器,2013,50(9):1?鄄3. HAN Saigen,GUO Xianqing,TANG Qian,et al.Analysis and calculation of the best capacitive set?鄄point of on?鄄load adjustable capacitive transformer in operation[J]. Transformer,2013,50(9):1?鄄3.
[3]  董景义,李 杰,马立明,等.换流变压器漏磁场分布特性仿真研究[J]. 变压器,2013,50(10):20?鄄23. DONG Jingyi,LI Jie,MA Liming,et al.Simulation study on distribution characteristics of leakage magnetic field converter transformer[J]. Transformer,2013,50(10):20?鄄23.
[4]  王录亮,刘文里,于会凤.电力变压器绕组轴向短路动态力的计算[J]. 变压器,2013,50(1):14?鄄16. WANG Luliang,LIU Wenli,YU Huifeng. Calculation of winding axial short?鄄circuit dynamic force of power transformer[J]. Transformer,2013,50(1):14?鄄16.
[5]  马亚龙,王精业,徐享忠,等.基于正负理想点的仿真结果评估方法研究[J]. 计算机工程,2002,28(2):21?鄄22. MA Yalong,WANG Jingye,XU Xiangzhong,et al. Study of evaluation method for simulation result based on positive and negative ideal point[J]. Computer Engineering,2002,28(2): 21?鄄22.
[6]  李俊卿,王德艳,雍 靖.基于组合预测模型的变压器油中溶解气体质量浓度的预测[J]. 广东电力,2011,24(9):19?鄄23. LI Junqing,WANG Deyan,YONG Jing. Forecast of mass concentration of dissolved gas in transformer oil based on combinative forecasting model[J]. Guangdong Electric Power,2011,24(9): 19?鄄23.
[7]  程文清,李新叶.基于改进理想点解法的电力变压器状态综合评估[J]. 高压电器,2009,45(6):120?鄄123. CHENG Wenqing,LI Xinye. Integrated condition assessment of power transformer based on improved TOPSIS[J]. High Voltage Apparatus,2009,45(6): 120?鄄123.
[8]  胡元潮,阮 羚,阮江军,等.基于改进逼近理想点法的变电站智能化改造评估[J]. 电网技术,2012,36(10):42?鄄48. HU Yuanchao,RUAN Ling,RUAN Jiangjun,et al. Evaluation on intelligent renovation of substations based on improved TOPSIS[J]. Power System Technology,2012,36(10): 42?鄄48.
[9]  肖燕彩,朱衡君,张霄元,等.基于溶解气体分析的电力变压器在线监测与诊断技术[J]. 电力自动化设备,2006(6):93?鄄96. XIAO Yancai,ZHU Hengjun,ZHANG Xiaoyuan,et al. On?鄄line monitoring and diagnosis of power transformer based on dissolved gas analysis[J]. Electric Power Automation Equipment,2006(6): 93?鄄96.
[10]  GB/T 7252―2001 变压器油中溶解气体分析和判断导则[S]. 北京: 中国标准出版社,2001. GB/T 7252―2001 Transformer oil dissolved gas analysis and judgment guide[S]. Beijing:China Standard Press,2001.
[11]  郝宁波,廖海斌.基于灰色理论的电力变压器故障预测[J]. 计算机与数字工程,2011,39(1):138?鄄142. HAO Ningbo,LIAO Haibin. Predication of power transformer faults based on gray theory[J]. Computer and Digital Engineering,2011,39(1): 138?鄄142.
[12]  郑元兵,陈伟根,李 剑,等.基于BIC与SVRM的变压器油中气体预测模型[J]. 电力自动化设备,2011,31(9):46?鄄49. ZHENG Yuanbing,CHEN Weigen,LI Jian,et al. Forecasting model based on BIC and SVRM for dissolved gas in transformer oil[J]. Electric Power Automation Equipment,2011,31(9): 46?鄄49.
[13]  王有元,廖瑞金,孙才新,等.变压器油中溶解气体浓度灰色预测模型的改进[J]. 高电压技术,2003, 29(4):24?鄄26. WANG Youyuan, LIAO Ruijin, SUN Caixin, et al. An improved grey prediction model for dissolved gas in transformer oil[J]. High Voltage Engineering, 2003, 29(4): 24?鄄26.
[14]  沙立成,宋 ?.基于改进粒子群优化LS?鄄SVM的变压器故障气体预测[J]. 华北电力大学学报,2011, 38(1):35?鄄38. SHA Licheng, SONG Jun. Predicting method for dissolved gas in transformer oil based on modified particle swarm optimization[J]. Journal of North China Electric Power University, 2011, 38(1): 35?鄄38.
[15]  费胜巍,孙 宇.融合粗糙集与灰色理论的电力变压器故障预测[J]. 中国电机工程学报,2008, 28(16):154?鄄160. FEI Shengwei, SUN Yu. Fault prediction of power transformer by combination of rough sets and grey theory[J]. High Voltage Engineering, 2008, 28(16): 154?鄄160.
[16]  肖燕彩,朱衡君,陈秀海.用灰色多变量模型预测变压器油中溶解的气体浓度[J]. 电力系统自动化,2006, 30(13):64?鄄67. XIAO Yancai, ZHU Hengjun, CHEN Xiuhai. Concentration prediction of dissolved gas?鄄in?鄄oil of a power transformer with the multivariable grey model[J]. Automation of Electric Power Systems, 2006, 30(13): 64?鄄67.
[17]  袁 蕾,杜 林,吴俊美,等.基于模糊隶属函数的变压器多参量故障综合诊断方法[J]. 高压电器,2011, 47(5):35?鄄42. YUAN Lei, DU Lin, WU Junmei, et al. Transformer multi?鄄parameter integrated fault diagnosis method based on fuzzy membership function[J]. High Voltage Apparatus, 2011, 47(5): 35?鄄42.
[18]  王 鹏,许 涛.用统计学习理论预测变压器油中溶解气体浓度[J]. 高电压技术,2003, 29(11):13?鄄14. WANG Peng, XU Tao. An prediction model for dissolved gas in transformer oil based on statistical learning theory[J]. High Voltage Engineering, 2003, 29(11): 13?鄄14.
[19]  王 罡,杨海涛,胡伟涛,等.基于改进遗传算法与LS?鄄SVM的变压器故障气体预测方法[J].高压电器,2010, 46(9):11?鄄14. WANG Gang, YANG Haitao, HU Weitao, et al. Predicting method for dissolved gas in transformer oil based on improved genetic algorithm and LS?鄄SVM[J]. High Voltage Apparatus, 2010, 46(9): 11?鄄14.
[20]  毛自娟.基于灰色马尔可夫模型的变压器油中溶解气体体积分数预测[J]. 高压电器,2012, 48(10):47?鄄51. MAO Zijuan. Concentration prediction of gases dissolved in transformer oil via grey markov chain model[J]. High Voltage Apparatus, 2012, 48(10): 47?鄄51.
[21]  杨 洪,古世甫,陶加贵,等.自适应分级多分类支持向量机在变压器故障诊断中的应用[J]. 高压电器,2010, 46(5):49?鄄52. YANG Hong, GU Shifu, TAO Jiagui, et al. Application of adaptive hierarchical multi?鄄class SVM to transformer fault diagnosis[J]. High Voltage Apparatus, 2010, 46(5): 49?鄄52.
[22]  谢 庆,彭 澎,唐 山,等.基于云物元分析原理的电力变压器故障诊断方法研究[J]. 高压电器,2009,45(6):74?鄄77. XIE Qing, PENG Peng, TANG Shan, et al. Study on fault diagnosis for power transformer based on cloud matter element analysis principle and DGA[J]. High Voltage Apparatus,2009,45(6): 74?鄄77.
[23]  乔维德.基于模拟退火改进粒子群混合算法的变压器故障诊断[J]. 高压电器,2008, 44(3):208?鄄210. QIAO Weide. Transformer fault diagnosis based on SAPSO?鄄BP hybrid algorithm[J]. High Voltage Apparatus,2008,44(3): 208?鄄210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133