全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

输电线路杆塔及接地体雷电冲击响应分析

, PP. 19-25

Keywords: 输电杆塔,避雷线,接地体,冲击响应,CDEGS

Full-Text   Cite this paper   Add to My Lib

Abstract:

雷击是造成输电线路跳闸的主要原因,研究输电线路及接地体的雷电冲击响应具有十分重要的意义。为此,笔者运用电磁分析软件CDEGS建立了500kV双回路自立式输电线路杆塔雷电冲击模型,分析不同雷电流波形、不同杆塔参数、不同土壤电阻率和不同接地体长度下输电线路杆塔及接地体上雷电冲击响应规律。计算结果表明,雷击杆塔塔顶时,避雷线分流大小与土壤电阻率成正比关系,雷电流过大将导致绝缘子击穿;雷电流波前时间越短、横担越窄、杆塔越高、土壤电阻越大、接地体越短,雷击时塔顶和接地体冲击电压峰值越高;在高土壤电阻率地区通过增长接地体长度、降低土壤电阻率能有效降低塔顶和接地体电位。

References

[1]  何金良,曾 嵘. 电力系统接地技术[M]. 北京:科学出版社,2007:16-25. HE Jinliang,ZENG Rong. Grounding technology in power conductor[M]. Beijing:Science Press,2007:16-25.
[2]  刘家芳,许 飞. 超高压输电线路雷击跳闸典型故障分析[J]. 高电压技术,2006,32(4):114-115. LIU Jiafang,XU Fei. Analysis on typical accident of EHV transmission line[J]. High Voltage Engineering,2006,32(4):114-115.
[3]  傅惠芹,江奕川. 输电线路防雷措施研究[J]. 电网技术,2008,32(S2):247-249. FU Huiqin,JIANG Yichuan. Research on lightning protection of transmission line[J]. Power System Technology,2008,32(S2):247-249.
[4]  李瑞芳,吴广宁,曹晓斌,等. 山区输电线路雷电绕击跳闸率的计算[J]. 电网技术,2010,34(12):142-146. LI Ruifang,WU Guangning,CAO Xiaobin,et al. Calculation of shielding failure trip-out rate for transmission lines in mountain areas[J]. Power System Technology,2010,34(12):142-146.
[5]  詹 铭,刘 捷,曹 宁,等. 高压架空输电线路防雷措施与应用[J]. 广东电力,2012,25(4):95-99. ZHAN Ming,LIU Jie,CAO Ning,et al. Lightning protection measures for HV overhead transmission lines and the practical application[J]. Guangdong Electric Power,2012,25(4):95-99.
[6]  彭向阳. 广东线路避雷器防雷效果及运行分析[J]. 电瓷避雷器,2010(2):21-25. PENG Xiangyang. Analysis on lightning protection effects and operationof line arresters in Guangdong power grid[J]. Insulators and Surge Arresters,2010(2):21-25.
[7]  李立?,司马文霞,杨 庆,等. 云广±800 kV 特高压直流输电线路耐雷性能研究[J]. 电网技术,2007,31(8):1-5. LI Licheng,SIMA Wenxia,YANG Qing,et al. Research on lightning withstand performance of ±800 kV ultra HVDC power transmission line from Yunnan to Guangdong[J].Power System Technology,2007,31(8):1-5.
[8]  孙 萍. 220 kV新杭线Ⅰ回路雷击跳闸率的实测与计算[J]. 电网技术,1999,23(9):12-13. SUN Ping. Measurement and calculation of lightning flash-over rate of 220 kV Xinhang No.1 transmission line[J]. Power System Technology,1999,23(9):12-13.
[9]  李景丽,蒋建东,李丽丽. 针刺式接地装置降阻机制的仿真和试验研究[J]. 电网技术,2013,37(1):211-217. LI Jingli,JIANG Jiandong,LI Lili. Simulation and experiment study on resistance-reducing mechanism of grounding device with spicules[J]. Power System Technology,2013,37(1):211-217.
[10]  HE J L,GAO Y Q,ZENG R,et al. Effective length of counterpoise wire under lighting current[J]. IEEE Transactions on Power Delivery,2005,22(2):1585-1591.
[11]  张 波,薛惠中,金祖山,等. 遭受雷击时输电杆塔及其接地装置的暂态电位分布[J]. 高电压技术,2013,39(2):393-398. ZHANG Bo,XUE Huizhong,JIN Zushan,et al. Transient potential distribution of transmission tower and its grounding device under lightning[J]. High Voltage Engineering,2013,39(2):393-398.
[12]  ZAKARIA Z,BASHI S M,MAILAH N F,et al. Simulation of lightning surges on tower transmission using PSCAD/EMTDC:A comparative study[C]//Student Conference on Research and Development Proceeding.Shah Alam,Malaysia:IEEE,2002:426-429.
[13]  孙 萍. 有关输电线路防雷计算中几个参数取值的建议[J]. 电网技术,1998,22(8):75-78. SUN Ping. Some suggestions on setting of parameter values in lightning protection calculation for transmission lines[J]. Power System Technology,1998,22(8):75-78.
[14]  FAN T Y. Heat generation in Nd: YAG and Nb: YAG[J]. IEEE J Quantum Electron,1993, 29(6):1457-1459.
[15]  赵紫辉,吴广宁,曹晓斌. 计及冲击电晕的输电线路雷电过电压影响因素研究[J]. 电瓷避雷器,2013 (2):109-118. ZHAO Zihui,WU Guangning,CAO Xiaobin. Influence factors research on lightning overvoltage of transmission lines considering the effect of impulse corona[J]. Insulators and Surge Arresters,2013(2):109-118.
[16]  莫 芸,陈荣锋,刘 刚,等. 基于PSCAD的10 kV配电线路接地装置冲击特性研究[J]. 电瓷避雷器,2013(3):53-57. MO Yun,CHEN Rongfeng,LIU Gang,et al. The research on the impact characteristic of the grounding device of 10 kV distribution line based on PSCAD[J]. Insulators and Surge Arresters,2013(3):53-57.
[17]  张 颖,高亚栋,杜 斌,等. 输电线路防雷计算中的新杆塔模型[J]. 西安交通大学学报,2004,38(4):365-368. ZHANG Ying,GAO Yadong,DU Bin,et al. New tower model in calculation of lightning protection on transmission line[J]. Journal of Xi’an Jiaotong University,2004,38(4):365-368.
[18]  HARA T,YAMAMOTO O. Modeling of a transmission tower for lightning-surge analysis[J]. IEE Proceedings Generation Transmission and Distribution,1996,143(3):283-289.
[19]  YAMADA T,MOCHIZUKI A,SAWADA J,et al. Experimental evaluation of a UHV tower model for lightning surge analysis[J]. IEEE Transactions on Power Delivery,1995,10(1):393-402.
[20]  原武久,山本修,林宗明,等. 垂直?体および垂直??体サ?ジインピ?ダンスの??式[J]. ??学会?文?1989,110(2):129-137. HARA T,YAMAMOTO O,KAYASHI M,et al. Empirical formulas of surge impedance for single and multiple vertical cylinder[J]. IEE Japan,1989,110(2):129-137.
[21]  程汉湘,何绍洋,黄超宪. 控电抗器的电磁特性分析[J]. 变压器,2013,50(8):16-18. CHENG Hanxiang,HE Shaoyang,HUANG Chaoxian. Electromagnetic characteristic analysis of magnetically controlled reactor[J]. Transformer,2013,50(8):16-18.
[22]  姜益民. 电力变压器运行负压产生原因及危害[J]. 变压器,2013,50(6):61-63. JIANG Yimin. Reasons of power transformer operation negative pressure and harm[J]. Transformer,2013,50(6):61-63.
[23]  薛 岩. 500 kV输电线路耐张绝缘子串的带电更换[J]. 东北电力技术,1999(8):49-52. XUE Yan. The exchange for strain insulator-string of 500 kV live lines[J]. Northeast Electric Power Technology,1999(8):49-52.
[24]  吴 昊,陈名铭,张 敏,等. 接地模块冲击特性的试验研究[J]. 电瓷避雷器,2013(3):110-115. WU Hao,CHEN Mingming,ZHANG Min,et al. Experimental study on impact characteristics of grounding module[J]. Insulators and Surge Arresters,2013(3):110-115.
[25]  高伟锋,陈荣锋,许海林. 不同塔型对输电线路雷击特性差异影响分析[J]. 电瓷避雷器,2013(6):76-86. GAO Weifeng,CHEN Rongfeng,XU Hailin. An analysis on the effect of different tower type on lightning performance differences of transmission lines considering[J]. Insulators and Surge Arresters,2013(6):76-86.
[26]  CHISHOLM W A,CHOW Y L,SRIVASTAVA K D. Lightning surge response of transmission towers[J]. Power Engineering Review,1983,PER-3(9):56-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133