全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

真空开关触头结构形式对磁感应强度和电磁力的影响

, PP. 193-198

Keywords: 真空灭弧室,触头,仿真计算,横向磁场

Full-Text   Cite this paper   Add to My Lib

Abstract:

笔者采用仿真计算的方法,对不同结构形式的横磁触头磁感应强度和电磁力进行了分析,得出了触头结构形式对磁感应强度和电磁力的影响规律。16匝横磁触头结构的最大磁感应强度值(49.21mT)最小,4匝横磁触头结构的最大磁感应强度值(63.86mT)居中,螺旋槽横磁触头结构的最大磁感应强度值(74.54mT)最大。16匝横磁触头结构电弧模型的电磁力(0.0421N)最小,4匝横磁触头结构电弧模型的电磁力(0.0636N)居中,螺旋槽横磁触头结构电弧模型的电磁力(0.1176N)最大。

References

[1]  沦 兹.真空灭弧室纵向和横向磁场触头优化应用[J]. 东北电力技术,2002(1):23-25. LUN Zi. The application of contacts optimization for the longitudinal and transverse magnetic fields in vacuum arc extinguish chambers[J]. Northeastern Electric Power Technology,2002(1):23-25.
[2]  SCHNEIDER H N. Contact structure for an electric circuit interrupter:US Patent,US73041358A[P].1960-08-16.
[3]  REECE M P. A review of the development of the vacuum interrupter[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Scien,1973, 275(1248):121-129.
[4]  YANABU S,KANEKO E,OKUMURA H,et al. Novel electrode structure of vaccum interrupter and its practical application[J]. IEEE Trans. Pow. App. Syst.,1981,PAS-100(4):1966-1974.
[5]  PAUL B,RENZ R.Europaeische patentschrift 0155376:US Patent,4620074 1986[P]. 1986-10-28.
[6]  程礼椿. 真空电弧基础现象研究与真空开关触头结构的设计和发展[J]. 高压电器,1986,22(6):16-21. CHENG Lichun. Basic study of vacuum arc and design and development of the structures of vacuum switch contact[J]. High Voltage Apparatus,1986,22(6):16-21.
[7]  修士新,庞先海,张 敏. 真空灭弧室横向磁场触头间磁吹力的计算分析[J]. 真空电子技术,2007(5):19-22. XIU Shixin,PANG Xianhai,ZHANG Min. Computation and analysis of magnetic blowout forces in transverse magnetic field contacts of vacuum interrupter[J]. Vacuum Electronics,2007(5):19-22.
[8]  朱立颖,武建文. 横向磁场下中频真空电弧形态及电弧电压特性[J]. 中国电机工程学报,2011,31(1):131-137. ZHU Liying,WU Jianwen. Modes of intermediate-frequency vacuum arc and characteristics of arc voltage under transverse magnetic field[J]. Proceedings of the CSEE,2011,31(1):131-137.
[9]  SCHELLEKENS H. 50 years of TMF contacts design considerations[C]//International Symposium on Discharges and Electrical Insulation in Vacuum. Bucharest. Romania:IEEE-DEIS,2008:95-98.
[10]  RENZ R. Thermodynamic models for RMF-and AMF- vacuum arcs[C]//International Symposium on Discharges and Electrical Insulation in Vacuum. Matsue,Japan:IEEE-DEIS,2006:443-446.
[11]  SHANG G D W. High-speed observations of arc modes and material erosion on RMF-and AMF-contact electrodes[J]. IEEE Trans. on Plasma Science,2005,33(5I):1605-1610.
[12]  GENTSCH D,SHANG W. High-speed observations of arc modes on RMF-and AMF-contacts[C]//International Symposium on Discharges and Electrical Insulation in Vacuum. Yalta, Ukraine: IEEE-DEIS,2004:257-260.
[13]  DUNING G,LINDMAYER M. Energy and density of ions in vacuum arcs between axial and radial magnetic field contacts[J]. IEEE Trans. on Plasma Science,2001,29(5I):726-733.
[14]  KUROSAWA Y. Behavior of vacuum arcs in transverse magnetic field and axial magnetic field[C]//10th International Symposium on Discharge and Electrical Insulation in Vacuum.Columbia,USA: IEEE-DEIS,1982:261-267.
[15]  SHMELEV D L,DELACHAUX T. Physical modeling and numerical simulation of constricted high current vacuum arcs under action of transverse magnetic field[C]//International Symposium on Discharges and Electrical Insulation in Vacuum.Bucharest, Romania:IEEE-DEIS,2008:392-397.
[16]  DELACHAUX T,FRITZ O,GENTSCH D,et al. Numerical simulation of a moving high-current vacuum arc driven by a transverse magnetic field (TMF)[J]. IEEE Transactions on Plasma Science,2007,35(4):905-911.
[17]  DELACHAUX T. Modeling and simulation results of a high current vacuum arc in a transverse magnetic field[C]//International Symposium on Discharges and Electrical Insulation in Vacuum.Bucharest,Romania: IEEE-DEIS,2008:611-614.
[18]  DELACHAUX T,FRITZ O,GENTSCH D,et al. Simulation of a high current vacuum arc in a transverse magnetic field[J]. IEEE Transactions on Plasma Science,2009,37(8):1386-1392.
[19]  SHMELEV D L,DELACHAUX T. Physical modeling and numerical simulation of constricted high-current vacuum Arcs under the influence of a transverse magnetic field[J]. IEEE Transactions on Plasma Science,2009,37(8):1379-1385.
[20]  LI Y. Analysis of vacuum arc motion characteristic of cup-type transverse magnetic field contacts based on orthogonal design[C]//International Symposium on Discharges and Electrical Insulation in Vacuum.Bucharest, Romania: IEEE-DEIS,2008:288-291.
[21]  HARDT N,HEIMBACH M,BOHME H,et al. The dynamic voltage/current characteristics of vacuum arcs after breakdown at currents in the lower kHz-range[J]. European Transactions on Electrical Power,2002,12(5):321-327.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133