全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

DOI: 10.1155/2010/264781

Full-Text   Cite this paper   Add to My Lib

Abstract:

H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine) (PAH). The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules. 1. Introduction The labeling of biological or technical materials with fluorescent dyes has gained a great importance in connection with the development of new modern fluorescence-based analytical techniques such as Fluorescence Correlation Spectroscopy (FCS) [1, 2], Single Molecule Spectroscopy (SMS) [3], Confocal Laser Scanning Microscopy (CLSM) [4], Fluorescence Resonance Energy Transfer (FRET) [5], Fluorescence Recovery after Photobleaching (FRAP) [6], or time resolved spectroscopic methods down to femtoseconds [7, 8]. For all of these processes the spectroscopic parameters of the dye molecules such as excitation and emission spectra, lifetime and fluorescence quantum yield are important but often change in an unpredictable way by the labeling procedure [9–12]. Especially in the case of proteins high label degrees or label sites in close neighborhood lead to a strong decrease of the fluorescence quantum yield as well as a shift of absorption and fluorescence energy [13–15]. We investigated these processes on the well-known chromophore Bis(indolenyl)pentamethincyanine that is commercially available under the label name Cy5 (Figure 1). Strong changes in the spectroscopic properties of the dye have been observed earlier by simple adsorption of the positively charged chromophore to negatively charged macromolecules, namely, polyanions [16, 17]. In this paper we studied the spectroscopic behavior of the dye after covalent linkage to the cationic macromolecule PAH. The polyelectrolyte PAH of molecular weight 70?kDa can not only serve as a simple model for

References

[1]  D. Pristinski, V. Kozlovskaya, and S. A. Sukhishvili, “Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions,” Journal of Chemical Physics, vol. 122, no. 1, article 014907, pp. 1–9, 2005.
[2]  C. Reznik, Q. Darugar, A. Wheat, T. Fulghum, R. C. Advincula, and C. F. Landes, “Single ion diffusive transport within a poly(styrene sulfonate) polymer brush matrix probed by fluorescence correlation spectroscopy,” Journal of Physical Chemistry B, vol. 112, no. 35, pp. 10890–10897, 2008.
[3]  K. Becker and J. M. Lupton, “Efficient light harvesting in dye-endcapped conjugated polymers probed by single molecule spectroscopy,” Journal of the American Chemical Society, vol. 128, no. 19, pp. 6468–6479, 2006.
[4]  A. P. R. Johnston, A. N. Zelikin, L. Lee, and F. Caruso, “Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles,” Analytical Chemistry, vol. 78, no. 16, pp. 5913–5919, 2006.
[5]  C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nature Materials, vol. 4, no. 11, pp. 826–831, 2005.
[6]  V. E. Keuren and W. Schrof, “Fluorescence recovery after two-photon bleaching for the study of dye diffusion in polymer systems,” Macromolecules, vol. 36, no. 13, pp. 5002–5007, 2003.
[7]  K. Ray, H. Nakahara, A. Sakamoto, and M. Tasumi, “Excitation energy transfer from symmetric cyanine dyes to unsymmetric merocyanine aggregated in functionalized Langmuir-Blodgett films by time-resolved fluorescence spectroscopy,” Chemical Physics Letters, vol. 342, no. 1-2, pp. 58–64, 2001.
[8]  K. Becker, J. M. Lupton, J. Feldmann, et al., “On-chain fluorenone defect emission from single polyfluorene molecules in the absence of intermolecular interactions,” Advanced Functional Materials, vol. 16, no. 3, pp. 364–370, 2006.
[9]  E. E. Jelly, “Spectral absorption and fluorescence of dyes in the molecular state,” Nature, vol. 138, p. 1009, 1936.
[10]  G. Scheibe, “Uber die veranderlichkeit der absorptions- spektren in losungen und die nebenvalenzen als ihre ursache,” Angewandte Chemie, vol. 49, no. 31, p. 563, 1936.
[11]  W. West, S. P. Lovell, and W. Cooper, “Electronic spectra of cyanine dyes at low temperature. 1,” Photographic Science and Engineering, vol. 14, no. 1, pp. 52–62, 1970.
[12]  U. Roesch, S. Yao, R. Wortmann, and F. Wuerthner, “Fluorescent H-aggregates of merocyanine dyes,” Angewandte Chemie - International Edition, vol. 45, no. 42, pp. 7026–7030, 2006.
[13]  R. W. Chambers, T. Kajiwara, and D. R. Kearns, “Effect of dimer formation of the electronic absorption and emission spectra of ionic dyes. Rhodamines and other common dyes,” Journal of Physical Chemistry, vol. 78, no. 4, pp. 380–387, 1974.
[14]  M. Van Der Auweraer, G. Biesmans, and F.-C. De Schryver, “On the photophysical properties of aggregates of 3-(2-phenyl)-indolocarbocyanines,” Chemical Physics, vol. 119, no. 2-3, pp. 355–375, 1988.
[15]  H. J. Gruber, C. D. Hahn, G. Kada, et al., “Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin,” Bioconjugate Chemistry, vol. 11, no. 5, pp. 696–704, 2000.
[16]  C. S. Peyratout, E. Donath, and L. Daehne, “Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution,” Journal of Photochemistry and Photobiology A, vol. 142, no. 1, pp. 51–57, 2001.
[17]  C. S. Peyratout, E. Donath, and L. Daehne, “Aggregation of thiacyanine derivatives on polyelectrolytes,” Physical Chemistry Chemical Physics, vol. 4, no. 13, pp. 3032–3039, 2002.
[18]  G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997.
[19]  C. S. Peyratout and L. Daehne, “Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers,” Angewandte Chemie-International Edition, vol. 116, no. 29, pp. 3762–3783, 2004.
[20]  R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, “Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters,” Bioconjugate Chemistry, vol. 4, no. 2, pp. 105–111, 1993.
[21]  F. M. Winnik, “Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media,” Chemical Reviews, vol. 93, no. 2, pp. 587–614, 1993.
[22]  A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York, NY, USA, 1962.
[23]  M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure and Applied Chemistry, vol. 11, pp. 371–392, 1965.
[24]  D. Moebius, “Scheibe-aggregates: highly ordered systems of strongly interacting chromophores,” Advanced Materials, vol. 7, pp. 437–444, 1995.
[25]  A. Fery, B. Scholer, and T. Cassagneau, “Nanoporous thin films formed by salt-induced structural changes in multilayers of poly(acrylic acid) and poly(allylamine),” Langmuir, vol. 17, no. 3-4, pp. 3779–3783, 2001.
[26]  R. Georgieva, R. Dimova, and G. Sukhorukov, “Influence of different salts on micro-sized polyelectrolyte hollow capsules,” Journal of Materials Chemistry, vol. 15, no. 40, pp. 4301–4310, 2005.
[27]  A. Mishra, G. B. Behera, M. M. G. Krishna, and N. Periasamy, “Time-resolved fluorescence studies of aminostyryl pyridinium dyes in organic solvents and surfactant solutions,” Journal of Luminescence, vol. 92, no. 3, pp. 175–188, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133