全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

基于DGA的差分进化支持向量机电力变压器故障诊断

, PP. 13-18

Keywords: 支持向量机,差分进化,核函数,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对支持向量机中参数选择严重影响分类效果的特点,提出采用差分进化算法对核函数g和惩罚因子c进行优化,得到最优的支持向量机模型,用于变压器的故障诊断。在简单介绍支持向量机的基础上,分析了采用差分进化算法对支持向量机优化的可行性。通过将收集的数据样本进行预处理,再利用差分进化的变异、交叉和选择对高斯径向基核函数进行优化,搜索出最优(c,g),并对得到的参数进行验证,获得最优的支持向量机模型。仿真实验表明,与SVM、GRID-SVM、GA-SVM、PSO-SVM相比,该方法误判率最低、全局寻优能力及鲁棒性较好。

References

[1]  朱永利,尹金良. 组合核相关向量机在电力变压器故障诊断中的应用研究[J].中国电机工程学报, 2013, 33(22): 68-74. ZHU Yongli,YIN Jinliang. Study on application of multi-kernel learning relevance vector machines in fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2013, 33(22): 68-74.
[2]  马叶芝, 焦彦军, 王东升,等. 变压器故障诊断中溶解气体的PSO-WFCM算法研究[J]. 高压电器, 2014, 50(1):72-76. MA Yezhi, JIAO Yanjun, WANG Dongsheng, et al. Detection of dissolved gas with PSO-WFCM algorithm power transformer[J]. High Voltage Apparatus, 2014,50(1):72-76.
[3]  谢红侠. 变压器维修决策的研究[D]. 徐州: 中国矿业大学, 2012. XIE Hongxia, Study on maintenance decision in transformer[D]. Xuzhou: China University of Mining and Technology, 2012.
[4]  国家质量监督检验检疫总局.GB/T 7252―2001变压器油中溶解气体分析和判断导则[S].2001. General Administration of Quality,Inspection and Quarantine of People’s Republic of China. Supervision guide to the analysis and the diagnosis of gases dissolved in transformer oil[S].2001.
[5]  MORAIS M R, MANNHEIMER A W, CARBALLEIRA M, et al. Furfural analysis for assessing degradation of thermally upgraded papers in transformer insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999, 6(2): 159-163.
[6]  武中利. 电力变压器故障诊断方法研究[D]. 保定: 华北电力大学, 2013. WU Zhongli. Research on fault diagnosing methods for power transformers[D]. Baoding: North China Electric Power University, 2013.
[7]  熊 浩, 孙才新, 杜 鹏,等. 基于物元理论的电力变压器状态综合评估[J]. 重庆大学学报, 2006, 29(10): 24-28. XIONG Hao, SUN Caixin,DU Peng,et al. Based on a comprehensive assessment of the state of the power transformer matter element theory[J]. Journal of Chongqing University, 2006, 29(10): 24-28.
[8]  SUN H C, HUANG Y C, HUANG C M. Fault diagnosis of power transformers using computational intelligence: A review[J]. Energy Procedia, 2012, 14(10): 1226-1231.
[9]  束洪春, 孙向飞, 司大军.电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法[J]. 中国电机工程学报, 2002, 22(2): 32-35. SHU Hongchun, SUN Xiangfei, SI Dajun. A RS approach to founding and maintaining ES knowledge base for fault diagnosis of power transformer[J]. Proceedings of the CSEE, 2002, 22(2): 32-35.
[10]  LIN C E, LING J M, HUANG C L. Expert system for transformer diagnosis using dissolved gas analysis[J]. IEEE Transaction on Power Delivery, 1993, 8(1): 231-238.
[11]  HUANG Y F. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic[J]. IEEE Trans. on Power Delivery, 1997,12(2): 761-767.
[12]  杜文霞, 吕 锋, 句希源. 基于BP神经网络的电力变压器故障诊断[J]. 变压器, 2007, 44(3): 45-47. DU Wenxia, LYU Feng, JU Xiyuan. Fault diagnosis of power transformer based on BP neural network[J]. Transformer, 2007, 44(3): 45-47.
[13]  宋 斌, 于 萍, 罗运柏, 等. 基于灰关联熵的充油变压器故障诊断方法[J]. 电力系统自动化, 2005, 29(18): 76-79. SONG Bin, YU Ping, LUO Yunbo, et al . Oil-filled power transformer fault diagnosis based on gray relational entropy[J]. Automation of Electric Power Systems, 2005, 29(18): 76-79.
[14]  肖燕彩. 支持向量机在变压器状态评估中的应用研究[D]. 北京: 北京交通大学, 2008. XIAO Yancai. Application study of support vector machine transformer condition assessment[D]. Beijing: Beijing Jiaotong University, 2008.
[15]  HE H, STARZYK J A. A self-organizing learning array system for power quality classification based on wavelet transform[J]. IEEE Trans. on Power Delivery, 2006, 21(1): 286-295.
[16]  平 源. 基于支持向量机的聚类及文本分类研究[D]. 北京: 北京邮电大学, 2012. PING Yuan. Research on clustering and text categorization based on support vector machine[D]. Beijing:Beijing University of Posts and Telecommunications, 2012.
[17]  陈 涛,雍龙泉,邓方安,等.基于差分进化算法的支持向量机参数选择[J]. 计算机工程与应用,2011,47(5):24-26. CHEN Tao,YONG Longquan,DENG Fang’an,et al.Parameters selection of support vector machine based on differen-tial evolution[J]. Computer Engineering and Applications, 2011,47(5):24-26.
[18]  陈 亮.改进自适应差分进化算法及其应用研究[D]. 上海:东华大学,2012. CHEN Liang. Improved adaptive differential evolution algorithm and its applications[D]. Shanghai:Donghua University,2012.
[19]  林碧华,顾幸生.基于差分进化算法-最小二乘支持向量机的软测量建模[J]. 化工学报,2008,59(7):1681-1685. LIN Bihua,GU Xingsheng. Soft sensor modeling based on DE-LSSVM[J]. Journal of Chemical Industry and Engineering,2008,59(7):1681-1685.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133