全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

发电机定子线棒主绝缘老化规律与击穿电压预测研究

, PP. 105-110

Keywords: 击穿电压,特征参量,主绝缘

Full-Text   Cite this paper   Add to My Lib

Abstract:

击穿电压是表征发电机定子线棒主绝缘老化状态的特征参量,是影响发电机寿命的直接原因,笔者设计了额定电压为8.5kV的环氧云母绝缘板材并进行加速热老化试验,通过分析主绝缘板材特征参量的变化趋势,结合击穿电压与特征参量有效性判别,得到能有效表征主绝缘击穿电压的实用特征参量组,并采用BP神经网络滚动式预测方式对主绝缘击穿电压预测,结果表明,该特征参数组Qmax、△C、C、△tanδ、tanδ能有效地用于主绝缘击穿电压预测。

References

[1]  IEEE Std 95(TM)―2002 IEEE recommended practice for insulation testing of AC electric machinery (2 300 V and above) with high direct voltage[S]. 2002.
[2]  李福兴. 大型发电机定子绕组绝缘诊断和寿命预测[J]. 华东电力,2004,32(2):54-56. LI Fuxing. The large generator stator winding insulation diagnosis and life prediction[J]. East China Electric Power,2004,32(2):54-56.
[3]  白 恺. 大型电机定子绕组绝缘系统的诊断性试验及其标准[J]. 华北电力技术,2006(4):40-45. BAI Kai. Diagnostic test and standard of utility-type generator stator winding insulating system[J]. North China Electric Power,2006(4):40-45.
[4]  任文娥,刘红文,于钦学,等. 发电机定子线圈绝缘诊断与寿命预测[J]. 高压电器,2012,48(11):7-12. REN Wen’e,LIU Hongwen,YU Qinxue,et al. Insulation diagnosis and life prediction of generator stator winding[J]. High Voltage Apparatus,2012,48(11):7-12.
[5]  郝艳捧,王国利,闫 波,等. 大电机定子线棒绝缘状态诊断的研究进展[J]. 高电压技术,2001,27(1):4-6. HAO Yanpeng,WANG Guoli,YAN Bo,et al. The review of diagnosis of stator insulation in large electrical machine[J]. High Voltage Engineering,2001,27(1):4-6.
[6]  皮如贵,梁智明,漆临生. 东方绝缘技术的进步与展望[J].东方电气评论,2009,23(2):42-48. PI Rugui,LIANG Zhiming,QI Linsheng. Progress and prospect of insulation technology in DFEM[J]. Dongfang Electric Review,2009,23(2):42-48.
[7]  鲍棋铭,高乃奎,马小芹,等. 大型发电机主绝缘老化的热分析研究[J]. 中国电机工程学报,2003, 23(7):99-101. BAO Qiming,GAO Naikui,MA Xiaoqin,et al. Study on the aging of stator insulation of large generators using thermoanalysis[J]. Proceedings of the Chinese Society for Electrical Engineering,2003,23(7):99-101.
[8]  ARSHAD M,KHALIQ A. Turbo generator stator winding condition assessment[C]//International Conference on Power System Technology.Singapore:[s.n.],2004:1399.
[9]  GJARDE A C. Multi-factor aging models-origin and similarities[J]. IEEE Trans. on Dielectrics and EI,1997,13(1):6-13.
[10]  TANAKA T. Partial discharge pulse distribution pattern analysis[J]. IEE Proc. Sci. Meas. Technol.,1995,142(1):46-50.
[11]  邱昌容,曹晓珑. 电气绝缘测试技术[M]. 北京:机械工业出版社,2002. QIU Changrong,CAO Xiaolong. Measurement technology of electrical insulation[M]. Beijing: China Machine Press,2002.
[12]  IEEE Std 43―2000(R2006)IEEE recommended practice for testing insulation resistance of rotating machinery[S]. 2006.
[13]  KARLSSON A,KARLSSON T. Estimating lifetimes for stator windings in hydropower generators[C]//2006 International Conference on Probabilistic Methods Applied to Power Systems.Stockholm,Sweden:[s.n.],2006:602-609.
[14]  GEBRAEEL N,ELWANY A,PAN J. Residual life predictions in the absence of prior degradation knowledge[J]. IEEE Transactions on Reliability, 2009,58(1):106-117.
[15]  HAMMER M,KOZLOVSKY T,SZABO R,et al. The use of neural networks for the Life prediction of insulating material of electric rotating machines[C]//Proceedings of the 2004 IEEE International Conference on Solid Dielectrics. Toulouse,France:IEEE ,2004:546-549.
[16]  金神雅树. 水轮发电机绝缘剩余寿命的推断[J]. 国外大电机,1998(4):52-56. JINSHEN Yashu. The inference of turbine generator insulation residual life[J]. External Big Motor, 1998(4):52-56.
[17]  PASCOLI G,HRIBERNIK W,UJVARI G. A practical investigation on the correlation between aging and the dissipation factor value of mica insulated generator windings[C]//International Conference on Condition Monitoring and Diagnosis. Beijing,China:[s.n.],2008:268-271.
[18]  NAKAYAMA A,HAGA K. Diagnosis technique for life expectancy of stator winding insulation of rotating machinery[J]. Fuji Electric Journal,1999,72(5):292-295.
[19]  彭华东,董 明,刘 媛,等. 回复电压法用于变压器油纸绝缘老化状态评估[J]. 电网与清洁能源,2012,28(9):6-12. PENG Huadong,DONG Ming,LIU Yuan,et al. Transformer oil-paper insulation ageing condition assessment using return voltage measurements[J]. Power System and Clean Energy,2012,28(9):6-12.
[20]  李 睿,曹顺安,盛 凯. 基于BP神经网络的多参数关联变压器油击穿电压的预测研究[J]. 高压电器,2008,44(4):342-346. LI Rui,CAO Shun’an,SHENG Kai. Prediction of breakdown voltage of transformer oil via multi-parameter correlation based on BP neural network[J]. High Voltage Apparatus,2008,44(4):342-346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133