Till date, market is augmented with a huge number of improved drug delivery systems. The success in this area is basically due to biodegradable polymers. Although conventional systems of drug delivery utilizing the natural and semisynthetic polymers so long but synthetic polymer gains success in the controlled drug delivery area due to better degradation profile and controlled network and functionality. The polyesters are the most studied class group due the susceptible ester linkage in their backbone. The Poly(glycolic Acid) (PGA), Poly(lactic acid) (PLA), and Polylactide-co-glycolide (PLGA) are the best profiled polyesters and are most widely used in marketed products. These polymers, however, still are having drawbacks which failed them to be used in platform technologies like matrix systems, microspheres, and nanospheres in some cases. The common problems arose with these polymers are entrapment inefficiency, inability to degrade and release drugs with required profile, and drug instability in the microenvironment of the polymers. These problems are forcing us to develop new polymers with improved physicochemical properties. The present review gave us an insight in the various structural elements of Poly(glycolic acid), polyester, with in depth study. The first part of the review focuses on the result of studies related to synthetic methodologies and catalysts being utilized to synthesize the polyesters. However the author will also focus on the effect of processing methodologies but due some constraints those are not included in the preview of this part of review. 1. Introduction Biodegradablepolymers can be efficiently utilized for various purposes such as drug delivery, orthopaedic, dental, and tissue engineering [1–7]. Such sophisticated applications usually require polymers with narrowly defined material properties. For a polymer to be used in drug delivery system, it is desired that it should degrade in prerequisite manner [8–12]. The rate of degradation (Hydrolytic and proteolytic degradation) of any polymer chiefly depends on its primary structure properties (Backbone and functionality characteristics), and secondary structural properties such as morphology, mechanical properties (tensile strength and modulus), the thermal properties (glass transition temperature , softening or melting point, degradation temperature) and the viscoelastic properties (storage and Loss moduli and tan?δ). The quality of these physicochemical properties depends on the structural features, such as backbone characteristics, functionalities, and crystal packing
References
[1]
R. K. Kulkarni, E. G. Moore, A. F. Hegyeli, and F. Leonard, “Biodegradable poly(lactic acid) polymers,” Journal of Biomedical Materials Research, vol. 5, no. 3, pp. 169–181, 1971.
[2]
R. A. Miller, J. M. Brady, and D. E. Cutright, “Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios,” Journal of Biomedical Materials Research, vol. 11, no. 5, pp. 711–719, 1977.
[3]
Based on a lecture presented at the Fourth Annual Biomaterial Symposium, Clemson University, Clemson, South Sarolina, Getter, 1972.
[4]
T. M. Jackanicz, H. A. Nash, D. L. Wise, and J. B. Gregory, “Polylactic acid as a biodegradable carrier for contraceptive steroids,” Contraception, vol. 8, no. 3, pp. 227–234, 1973.
[5]
L. C. Anderson, D. L. Wise, and J. F. Howes, “An injectable sustained release fertility control system,” Contraception, vol. 13, no. 3, pp. 375–384, 1976.
[6]
E. E. Schmitt and M. A. Epstein, US Patent 3718150, 1971.
[7]
A. D. Schwope, D. L. Wise, and J. F. Howes, “Lactic/glycolic acid polymers as narcotic antagonist delivery systems,” Life Sciences, vol. 17, no. 12, pp. 1877–1886, 1975.
[8]
E. E. Schmitt, M. Epstein, and R. A. Polistina, “Process for polymerizing a glycolide,” US Patent 3422871,1969.
[9]
E. E. Schmitt and R. A. Polistina, “Surgical sutures,” US Patent 3297033, 1967.
[10]
E. J. Frazza and E. E. Schmitt, “A new absorbable suture,” Journal of Biomedical Materials Research, vol. 5, no. 2, pp. 43–58, 1971.
[11]
G. S. Kumar, V. Kalpagam, and U. S. Nandi, “Biodegradable polymers: prospects, problems, and progress,” Reviews in Macromolecular Chemistry and Physics, vol. C22, no. 2, pp. 225–260, 1982.
[12]
D. F. Williams, “Biodegradation of surgical polymers,” Journal of Materials Science, vol. 17, no. 5, pp. 1233–1246, 1982.
[13]
D. K. Gilding and A. M. Reed, “Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo- and copolymers: 1,” Polymer, vol. 20, no. 12, pp. 1459–1464, 1979.
[14]
L. H. Sperling, Introduction to Physical Polymer Science, Wiley-Interscience, New York, NY, USA, 3rd edition, 2001.
[15]
R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, vol. 4, no. 9, pp. 835–864, 2004.
[16]
K. M. Benabdillah, M. Boustta, J. Coudane, and M. Vert, “Can the glass transition temperature of PLA polymers be increased?” in ACS Symposium Series, C. Scholz and R. A. Gross, Eds., vol. 764, pp. 200–220, American Chemical Society, Washington, DC, USA, 2000.
[17]
P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, USA, 1979.
[18]
S. B. Clough, X. F. Sun, S. K. Tripathy, and G. L. Baker, “Molecular dynamics simulation of substituted polyacetylenes,” Macromolecules, vol. 24, no. 15, pp. 4264–4269, 1991.
[19]
T. Masuda and T. Higashimura, “Polyacetylenes with substituents: their synthesis and properties,” Advances in Polymer Science, vol. 81, pp. 121–165, 1986.
[20]
S. S. Rogers and L. Mandelkern, “Glass formation in polymers. I. The glass transitions of the poly-(n-alkyl methacrylates),” Journal of Physical Chemistry, vol. 61, no. 7, pp. 985–990, 1957.
[21]
Y.-B. Lim, Y. H. Choi, and J.-S. Park, “A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester),” Journal of the American Chemical Society, vol. 121, no. 24, pp. 5633–5639, 1999.
[22]
L. M. Pratt and C. C. Chu, “Biodegradable polyesters: theoretical modeling of degradation,” in The Polymeric Materials Encyclopedia, J. C. Salamone, Ed., pp. 583–588, CRC Press, Boca Raton, Fla, USA, 1996.
[23]
M. Mochizuki, K. Mukai, K. Yamada, N. Ichise, S. Murase, and Y. Iwaya, “Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s,” Macromolecules, vol. 30, no. 24, pp. 7403–7407, 1997.
[24]
M. Mochizuki, M. Hirano, Y. Kanmuri, and K. Kudo, “Hydrolysis of polycaprolactone fibers by lipase: effects of draw ratio on enzymatic degradation,” Journal of Applied Polymer Science, vol. 55, no. 2, pp. 289–296, 1995.
[25]
K. Cho, J. Lee, and K. Kwon, “Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies,” Journal of Applied Polymer Science, vol. 79, no. 6, pp. 1025–1033, 2001.
[26]
M. Nagata, T. Machida, W. Sakai, and N. Tsutsumi, “Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters,” Journal of Polymer Science Part A, vol. 37, no. 13, pp. 2005–2011, 1999.
[27]
J. A. Ratto, P. J. Stenhouse, M. Auerbach, J. Mitchell, and R. Farrell, “Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system,” Polymer, vol. 40, no. 24, pp. 6777–6788, 1999.
[28]
U. Witt, R. J. Müller, J. Augusta, H. Widdecke, and W. D. Deckwer, “Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol,” Macromolecular Chemistry and Physics, vol. 195, no. 2, pp. 793–802, 1994.
[29]
D. A. Wood, International Journal of Pharmaceutics, vol. 7, p. 11, 1980.
[30]
D. Larobina, G. Mensitieri, M. J. Kipper, and B. Narasimhan, “Mechanistic understanding of degradation in bioerodible polymers for drug delivery,” AIChE Journal, vol. 48, no. 12, pp. 2960–2970, 2002.
[31]
T. G. Park, S. Cohen, and R. Langer, “Poly(L-lactic acid)/pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrices,” Macromolecules, vol. 25, no. 1, pp. 116–122, 1992.
[32]
E. E. Schmitt, M. Epstein, and R. A. Polistina, “Process for polymerizing a glycolide,” US Patent 3442871, 1969.
[33]
E. E. Schmitt and R. A. Polistina, “Surgical sutures,” US Patent 3297033, 1967.
[34]
E. J. Frazza and E. E. Schmitt, “A new absorbable suture,” Journal of Biomedical Materials Research, vol. 5, no. 2, pp. 43–58, 1971.
[35]
A. Glick and J. B. Mcpherson Jr., “Absorbable polyglycolic acid suture of enhanced in-vivo strength retention,” US Patent 3626948, 1971.
[36]
C. S. Fuller and C. L. Erickson, “An X-ray study of some linear polyesters,” Journal of the American Chemical Society, vol. 59, no. 2, pp. 344–351, 1937.
[37]
C. S. Fuller, C. J. Frosch, and N. R. Pape, “Chain structure of linear polyesters—trimethylene glycol series,” Journal of the American Chemical Society, vol. 64, pp. 154–160, 1942.
[38]
C. S. Fuller and C. J. Frosch, “Further investigation of the chain structure of linear polyesters,” Journal of Physical Chemistry, vol. 43, no. 3, pp. 323–334, 1939.
[39]
C. S. Fuller and C. J. Frosch, “X-ray investigation of the decamethylene series of polyesters,” Journal of the American Chemical Society, vol. 61, no. 10, pp. 2575–2580, 1939.
[40]
C. S. Fuller, “The investigation of synthetic linear polymers by X-rays,” Chemical Reviews, vol. 26, no. 2, pp. 143–167, 1940.
[41]
A. Turner-Jones and C. W. Bunn, “The crystal structure of polyethylene adipate and polyethylene suberate,” Acta Crystallographica, vol. 15, no. 2, pp. 105–113, 1962.
[42]
H. Hirono, G. Wasai, T. Mitsueda, and J. Furukaw, Journal of the Chemical Society of Japan, vol. 67, p. 604, 1964.
[43]
Y. Chatani, K. Suehiro, Y. Okita, H. Tadokoro, and K. Chujo, “Structural studies of polyesters. I. Crystal structure of polyglycolide,” Die Makromolekulare Chemie, vol. 113, no. 1, pp. 215–229, 1968.
[44]
D. F. Williams, “Biodegradation of surgical polymers,” Journal of Materials Science, vol. 17, no. 5, pp. 1233–1246, 1982.
[45]
D. K. Gilding and A. M. Reed, “Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo- and copolymers: 1,” Polymer, vol. 20, no. 12, pp. 1459–1464, 1979.
[46]
D. A. Deprospero and E. E. Schmitt, “Stable glycolide and lactide compositions,” US Patent 3597449, 1971.
[47]
Am.Cyanamid Co., Frensh Patent 1563261, 1969.
[48]
Am.Cyanamid Co., Frensh Patent 1512182, 1967.
[49]
H. Dardik, I. Dardik, and H. Laufman, “Clinical use of polyglycolic acid polymer as a new absorbable synthetic suture,” The American Journal of Surgery, vol. 121, no. 6, pp. 656–660, 1971.
[50]
D. C. Miln, J. O'Connor, and R. Dalling, “The use of polyglycolic acid suture in gastro-intestinal anastomosis,” Scottish Medical Journal, vol. 17, no. 3, pp. 108–110, 1972.
[51]
D. Wasserman, US Patent 1375008, 1971.
[52]
D. Wasserman and C. Versfelt, “Use of stannous octoate catalyst in the manufacture of L(-)lactide-glycolide copolymer sutures,” US Patent 3839297, 1975.
[53]
R. A. Miller, J. M. Brady, and D. E. Cutright, “Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios,” Journal of Biomedical Materials Research, vol. 11, no. 5, pp. 711–719, 1977.
[54]
D. L. Wise, G. J. McCormick, G. P. Willet, and L. C. Anderson, “Sustained release of an antimalarial drug using a copolymer of glycolic/lactic acid,” Life Sciences, vol. 19, no. 6, pp. 867–874, 1976.
[55]
T. Sato, M. Kanke, H. G. Schroeder, and P. P. DeLuca, “Porous biodegradable microspheres for controlled drug delivery. I. Assessment of processing conditions and solvent removal techniques,” Pharmaceutical Research, vol. 5, no. 1, pp. 21–30, 1988.
[56]
M. P. Redmon, A. J. Hickey, and P. P. DeLuca, “Prednisolone-21-acetate poly(glycolic acid) microspheres: influence of matrix characteristics on release,” Journal of Controlled Release, vol. 9, no. 2, pp. 99–109, 1989.
[57]
A. M. Hazrati, S. Akrawi, A. J. Hickey, P. Wedlund, J. Macdonald, and P. P. DeLuca, “Tissue distribution of indium-111 labeled poly(glycolic acid) matrices following jugular and hepatic portal vein administration,” Journal of Controlled Release, vol. 9, no. 3, pp. 205–214, 1989.
[58]
X. Jigang, C. Gonglin, H. Guoyi, and Z. Qingzhang, Hecheng Xianwei Gongye, vol. 29, p. 10, 2006.
[59]
J. Nieuwenhuis, “Synthesis of polylactides, polyglycolides and their copolymers,” Clinical Materials, vol. 10, no. 1-2, pp. 59–67, 1992.
[60]
P. Peng-gang, L. Guang-lin, Z. Zheng-yu, and W. Hong-tao, Zhongguo Jiaonianji, vol. 16, p. 14, 2007.
[61]
Z. Wangxi, Suliao Gongye, vol. 34, p. 1, 2006.
[62]
Z. Lingchong, L. Wenming, X. Qing, and L. Fengyi, Suliao Gongye, vol. 34, p. 8, 2006.
[63]
T. Kaiguang, H. Guanbao, and Y. Zelin, Hecheng Xianwei Gongye, vol. 30, p. 29, 2007.
[64]
M. Qiang, Y. Qing-fang, and Y. Jan-yan, Gaofenzi Cailiao Kexue Yu Gongcheng, vol. 20, p. 21, 2004.
[65]
J. Ren and Q.-F. Wang, “Synthesis research of biodegradable polylactide and co-polylactide,” Jianzhu Cailiao Xuebao, vol. 6, no. 4, p. 397, 2003.
[66]
W. Yuanliang and Z. Jainhua, Chongquing Daxue Xuebao, Ziran Kexueban, vol. 19, p. 112, 1996.
[67]
W. Zheng, W. Ting, and Z. Xueming, Lizi Jiahuan Yu Xifu, vol. 16, p. 311, 2000.
[68]
K. Takahashi, I. Taniguchi, M. Miyamoto, and Y. Kimura, “Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid),” Polymer, vol. 41, no. 24, pp. 8725–8728, 2000.
[69]
W. Zhe, N. Hong-zhe, and L. Xi-jing, Chongquing Daxue Xuebao, Ziran Kexueban, vol. 26, p. 112, 2005.
[70]
W. Zhaoyang, Z. Yaoming, Y. Yurong, W. Fang, Y. Gexin, and W. Jun, Hecheng Xianwei Gongye, vol. 27, p. 1, 2004.
[71]
K. Enomoto, M. Ajioka, and A. Yamaguchi, “Polyhydroxycarboxylic acid and preparation process thereof,” US Patent 5310865, 1994.
[72]
T. Kashima, T. Kameoka, C. Higuchi, M. Ajioka, and A. Yamaguchi, “Aliphatic polyester and preparation process thereof,” US Patent 5428126, 1995.
[73]
F. Ichikawa, M. Kobayashi, M. Ohta, Y. Yoshida, S. Obuchi, and H. Itoh, “Process for preparing polyhydroxycarboxylic acid,” US Patent 5440008, 1995.
[74]
M. Ohta, S. Obuchi, and Y. Yoshida, “Preparation process of polyhydroxycarboxylic acid,” US Patent 5444143, 1995.
[75]
M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, “The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid,” Journal of Environmental Polymer Degradation, vol. 3, no. 4, pp. 225–234, 1995.
[76]
M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, “Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid,” Bulletin of the Chemical Society of Japan, vol. 68, pp. 2125–2131, 1995.
[77]
S. I. Moona, C. W. Leeb, I. Taniguchia, M. Miyamotoa, and Y. Kimura, Polymer, vol. 42, p. 5059, 2001.
[78]
D. Xiguang, C. Li, Q. Chen, and C. Xuesi, Dongbei Shida Xuebao, Ziran Kexueban, vol. 35, p. 119, 2003.
[79]
J. W. Leenslag and A. J. Pennings, “Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate,” Die Makromolekulare Chemie, vol. 188, no. 8, pp. 1809–1814, 1987.
[80]
H. Yingting, P. Shaoxian, Z. Xipo, and S. Manxing, Suliao Gongye, vol. 37, p. 10, 2009.
[81]
Y.-M. Zhang, K.-M. Li, P. Wang, C.-Y. Jiao, and N. Han, “Direct synthesis of poly(l-lactic acid) by melt polycondensation under continuous microwave irradiation,” Gaofenzi Cailiao Kexue Yu Gongcheng, vol. 25, no. 10, pp. 27–30, 2009.
[82]
D.-K. Yoo and D. Kim, “Production of optically pure poly(lactic acid) from lactic acid,” Polymer Bulletin, vol. 63, no. 5, pp. 637–651, 2009.
[83]
L. Bo, Zhonggguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu, vol. 12, p. 4594, 2008.
[84]
L. Yu-fen, W. Zhao-yang, S. Xiu-mei, M. Zheng-zhou, and Z. Hai-jun, Hecheng Huaxue, vol. 16, p. 166, 2008.
[85]
R. Zong-li, L. De-dai, Z. Tian-hong, and L. Zi-qiang, Lanzhou Jiaotong Daxue Xuebao, vol. 27, p. 164, 2008.
[86]
X. J. Zhu, Y. Chen, J. S. He, L. Tan, and Y. Wang, “Synthesis of aliphatic-aromatic copolyesters by a melting bulk reaction between poly(butylene terephthalate) and DL-oligo(lactic acid),” High Performance Polymers, vol. 20, no. 2, pp. 166–184, 2008.
[87]
W. Xun and P. Shaoxian, Suliao Gongye, vol. 35, p. 14, 2007.
[88]
T. Kaiguang, H. Guanbao, and Y. Zelin, Hecheng Xianwei Gongye, vol. 30, p. 29, 2007.
[89]
S.-I. Moon, I. Taniguchi, M. Miyamoto, Y. Kimura, and C.-W. Lee, “Synthesis and properties of high-molecular-weight poly(L-lactic acid) by melt/solid polycondensation under different reaction conditions,” High Performance Polymers, vol. 13, no. 2, pp. S189–S196, 2001.
[90]
D. C. Tune, “Absorbable bone fixation device,” US Patent 4539981, 1985.
[91]
D. C. Tune, “Absorbable bone fixation device,” US Patent 4550449, 1985.
[92]
D. C. Tune, Polymeric Materials: Science and Engineering, vol. 59, p. 383, 1988.
[93]
H. Yingting, P. Shaoxian, Z. Xipo, and S. Manxing, Suliao Gongye, vol. 37, p. 10, 2009.
[94]
K. Hak Yong, H. Jong Taek, C. Chul Yong, and K. Tae Hyun, Korean Patent KR 96-28593, 1999.
[95]
E. G. Kiparisova and B. V. Lebedev, “The thermochemical characteristics of compounds of the polylactone series,” Zhurnal Fizicheskoi Khimii, vol. 71, no. 6, pp. 974–979, 1997.
[96]
B. Lebedev and A. Yevstropov, “Thermodynamic properties of polylactones,” Die Makromolekulare Chemie, vol. 185, no. 6, pp. 1235–1253, 1984.
[97]
B. V. Lebedev, A. A. Evstropov, E. G. Kiparisova, and V. I. Belov, Vysokomolekulyarnye Soedineniya, Seriya A, vol. 20, p. 29, 1978.
[98]
B. V. Lebedev, A. A. Evstropov, E. G. Kiparisova, E. B. Lyudvig, and G. S. Sanina, Doklady Akademii Nauk SSSR, vol. 236, p. 669, 1977.
[99]
B. Min, S.-H. Kim, S. H. Kim, S. Kwon, H.-J. Kim, and W.-G. Kim, “Free acid effect and NMR study of glycolide,” Bulletin of the Korean Chemical Society, vol. 21, no. 6, pp. 635–637, 2000.
[100]
K. Hak Yong, K. Myung Seob, H. Jong Tak, Y. Yasuhiro, and K. Kyung Won, Han'guk Somyu Konghakhoechi, vol. 35, p. 38, 1998.
[101]
L. Bo, Zhonggguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu, vol. 13, p. 4916, 2009.
[102]
W. Jingmei and W. Ruofeng, Hencheng Xianwei Gongye, vol. 29, p. 14, 2006.
[103]
H. Cui-qiong, Z. Qing-zhang, and W. Ping, “On some problems in the software development of realtime data acquisition and processing system,” Beijing Huagong Daxue Xuebao, Ziran Kexueban, vol. 31, p. 62, 2004.
[104]
B. Buchholz, “Process for preparing polyesters based on hydroxycarboxylic acids,” US Patent 5302694, 1994.
[105]
L. Cotarca, P. Delogu, A. Nardelli, and V. ?unji?, “Bis(trichloromethyl) carbonate in organic synthesis,” Synthesis, no. 5, pp. 553–576, 1996.
[106]
J. Seppala, J. F. Selin, and T. Su, European Patent 593271, 1993.
[107]
J. Seppala, J. F. Selin, and T. Su, “Method for producing lactic acid based polyurethane,” US Patent 5380813, 1995.
[108]
M. Harkonen, K. Hiltunen, M. Malin, and J. V. Seppala, “Properties and polymerization of biodegradable thermoplastic poly(ester-urethane),” Journal of Macromolecular Science, Part A, vol. 32, no. 4, pp. 857–862, 1995.
[109]
P. V. Bonsignore, “Production of high molecular weight polylactic acid,” US Patent 5470944, 1995.
[110]
M. Spinu, “L-Dpolylactide copolymers with controlled morphology,” US Patent 5270400, 1993.
[111]
A. C. Ibay and L. P. Tenney, “Polymers from hydroxy acids and polycarboxylic acids,” US Patent 5206341, 1993.
[112]
M. K. Harkonen and J. V. Seppala, Abstracts of the Fourth International Workshop on Biodegradable Polymers J., 1995.
[113]
H. Inata and S. Matsumura, “Chain extenders for polyesters. I. addition-type chain extenders reactive with carboxyl end groups of polyesters,” Journal of Applied Polymer Science, vol. 30, no. 8, pp. 3325–3337, 1985.
[114]
S. M. Aharoni and T. Largman, “Process for preparing graft and block copolymers,” US Patent 4417031, 1983.
[115]
C. D. Dudgeon, Bis-Orthoesters as Polymer Intermediates, M.S. thesis, University of Massachusetts, 1976.
[116]
S. M. Aharoni and D. Masilamani, “Process for preparing extended chain polyesters and block or graft copolyesters,” US Patent 4568720, 1986.
[117]
S. M. Aharoni, C. E. Forbes, W. B. Hammond, D. M. Hindenlang, F. Mares, K. O'Brien, and R. D. Sedgwick, “High-temperature reactions of hydroxyl and carboxyl pet chain end groups in the presence of aromatic phosphite,” Journal of Polymer Science Part A, vol. 24, no. 6, pp. 1281–1296, 1986.
[118]
S. Gogolewski and A. J. Pennings, “Biodegradable materials of polylactides, 4. Porous biomedical materials based on mixtures of polylactides and polyurethanes,” Die Makromolekulare Chemie, Rapid Communications, vol. 3, no. 12, pp. 839–845, 1982.
[119]
B. Eling, S. Gogolewski, and A. J. Pennings, “Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres,” Polymer, vol. 23, no. 11, pp. 1587–1593, 1982.
[120]
A. G. Pinkus and R. Subramanyam, “New high-yield, one-step synthesis of polyglycolide from haloacetic acids,” Journal of Polymer Science Part A, vol. 22, no. 5, pp. 1131–1140, 1984.
[121]
S. Yuxiang, Z. Jin, and Y. Lubing, Huagong Shikan, vol. 14, p. 50, 2000.
[122]
T. Masuda, K. Kagami, K. Murata, A. Matsuda, and Y. Takami, Nippon Kagaku Kaishi, vol. 2, p. 257, 1982.
[123]
S. Kobayashi and H. Uyama, “In vitro biosynthesis of polyesters,” in Biopolyesters, W. Babel and A. Steinbuchel, Eds., vol. 71 of Advances in Biochemical Engineering/Biotechnology, pp. 241–262, Springer, Heidelberg, Germany, 2001.
[124]
H. Uyama and S. Kobayashi, “Enzymatic ring-opening polymerization of lactones catalyzed by lipase,” Chemistry Letters, vol. 7, pp. 1149–1150, 1993.
[125]
D. Knani, A. L. Gutman, and D. H. Kohn, “Enzymatic polyesterification in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening polymerization of ε-caprolactone,” Journal of Polymer Science Part A, vol. 31, no. 5, pp. 1221–1232, 1993.
[126]
R. T. MacDonald, S. K. Pulapura, and S. K. Pulapura, “Enzyme-catalyzed ε-caprolactone ring-opening polymerization,” Macromolecules, vol. 28, no. 1, pp. 73–78, 1995.
[127]
G. A. R. Nobes, R. J. Kazlauskas, and R. H. Marchessault, “Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s,” Macromolecules, vol. 29, no. 14, pp. 4829–4833, 1996.
[128]
S. Matsumura, K. Mabuchi, and K. Toshima, “Lipase-catalyzed ring-opening polymerization of lactide,” Macromolecular Rapid Communications, vol. 18, no. 6, pp. 477–482, 1997.
[129]
S. Matsumura, H. Beppu, K. Tsukada, and K. Toshima, “Enzyme-catalyzed ring-opening polymerization of β-propiolactone,” Biotechnology Letters, vol. 18, no. 9, pp. 1041–1046, 1996.
[130]
S. Matsumura, Y. Suzuki, K. Tsukada, K. Toshima, Y. Doi, and K.-I. Kasuya, “Lipase-catalyzed ring-opening polymerization of β-butyrolactone to the cyclic and linear poly(3-hydroxybutyrate),” Macromolecules, vol. 31, no. 19, pp. 6444–6449, 1998.
[131]
Y. Osanai, K. Toshima, and S. Matsumura, “Lipase-catalyzed reaction of molecularly pure linear and cyclic poly(3-hydroxybutanoate)s: evidence of cyclic polymer formation,” Chemistry Letters, no. 5, pp. 576–577, 2000.
[132]
H. Nishida, M. Yamashita, M. Nagashima, T. Endo, and Y. Tokiwa, “Synthesis of metal-free poly(1,4-dioxan-2-one) by enzyme-catalyzed ring-opening polymerization,” Journal of Polymer Science Part A, vol. 38, no. 9, pp. 1560–1567, 2000.
[133]
H. Uyama, S. Suda, H. Kikuchi, and S. Kobayashi, “Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones,” Chemistry Letters, vol. 26, no. 11, pp. 1109–1110, 1997.
[134]
A. Córdova, T. Iversen, K. Hult, and M. Martinelle, “Lipase-catalysed formation of macrocycles by ring-opening polymerisation of ε-caprolactone,” Polymer, vol. 39, no. 25, pp. 6519–6524, 1998.
[135]
H. Uyama, K. Takeya, N. Hoshi, and S. Kobayashi, “Lipase-catalyzed ring-opening polymerization of 12-dodecanolide,” Macromolecules, vol. 28, no. 21, pp. 7046–7050, 1995.
[136]
A. Kumar, B. Kalra, A. Dekhterman, and R. A. Gross, “Efficient ring-opening polymerization and copolymerization of ε-caprolactone and ω-pentadecalactone catalyzed by Candida antartica lipase B,” Macromolecules, vol. 33, no. 17, pp. 6303–6309, 2000.
[137]
S. Kobayashi, H. Uyama, S. Namekawa, and H. Hayakawa, “Enzymatic ring-opening polymerization and copolymerization of 8-octanolide by lipase catalyst,” Macromolecules, vol. 31, no. 17, pp. 5655–5659, 1998.
[138]
G. Odian, Principles of Polymerization, Wiley-Interscience, Hoboken, NJ, USA, 4th edition, 2004.
[139]
B. M. Trost, “The atom economy—a search for synthetic efficiency,” Science, vol. 254, no. 5037, pp. 1471–1477, 1991.
[140]
L. J. Gold, Chemical Physics, vol. 28, p. 91, 1958.
[141]
S. Penczek, A. Duda, R. Szymanski, and T. Biela, “What we have learned in general from cyclic esters polymerization,” Macromolecular Symposia, vol. 153, pp. 1–15, 2000.
[142]
R. Szymanski, “Molecular weight distribution in living polymerization proceeding with reshuffling of polymer segments due to chain transfer to polymer with chain scission, 1: determination of kp/ktr ratio from DPw/DPn data. Ideal reproduction of polymer chain activities,” Macromolecular Theory and Simulations, vol. 7, no. 1, pp. 27–39, 1998.
[143]
R. A. Gross, A. Kumar, and B. Kalra, “Polymer synthesis by in vitro enzyme catalysis,” Chemical Reviews, vol. 101, no. 7, pp. 2097–2124, 2001.
[144]
S. Kobayashi, “Enzymatic ring-opening polymerization of lactones by lipase catalyst: mechanistic aspects,” Macromolecular Symposia, vol. 240, pp. 178–185, 2006.
[145]
K. Chujo, H. Kobayashi, J. Suzuki, S. Tokuhara, and M. Tanabe, “Ring-opening polymerization of glycolide,” Die Makromolekulare Chemie, vol. 100, no. 1, pp. 262–266, 1967.
[146]
C. E. Lowe, “Preparation of high molecular weight polyhydroxyacetic ester,” US Patent 2668162, 1954.
[147]
W. Dittrich and R. C. Schulz, “Kinetik und Mechanismus der ring?ffnenden Polymerisation von L(—)-Lactid,” Die Angewandte Die Makromolekulare Chemie, vol. 15, no. 1, pp. 109–126, 1971.
[148]
H. R. Kricheldorf, J. M. Jonte, and R. Dunsing, “Polylactones, 7. The mechanism of cationic polymerization of β-propiolactone and ε-caprolactone,” Die Makromolekulare Chemie, vol. 187, no. 4, pp. 771–785, 1986.
[149]
H. R. Kricheldorf, R. Dunsing, and A. Serra, “Polylactones. 10. Cationic polymerization of δ-valerolactone by means of alkylating reagents,” Macromolecules, vol. 20, no. 9, pp. 2050–2057, 1987.
[150]
H. R. Kricheldorf and R. Dunsing, “Polylactones, 8. Mechanism of the cationic polymerization of L,L-dilactide,” Die Makromolekulare Chemie, vol. 187, no. 7, pp. 1611–1625, 1986.
[151]
H. R. Kricheldorf and I. Kreiser, “Polylactones, 11. Cationic copolymerization of glycolide with L,L-dilactide,” Die Makromolekulare Chemie, vol. 188, no. 8, pp. 1861–1873, 1987.
[152]
D. Bourissou, B. Martin-Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe, “Controlled cationic polymerization of lactide,” Macromolecules, vol. 38, no. 24, pp. 9993–9998, 2005.
[153]
M. Ba?ko and P. Kubisa, “Cationic copolymerization of ε-caprolactone and L,L-lactide by an activated monomer mechanism,” Journal of Polymer Science Part A, vol. 44, no. 24, pp. 7071–7081, 2006.
[154]
B. Atthoff, J. Hilborn, and T. Bowden, PMSE Preprints, vol. 88, p. 369, 2003.
[155]
T. Bowden, J. G. Hilborn, and N. Eriksson, PMSE Preprints, vol. 88, p. 535, 2003.
[156]
Y. Shibasaki, H. Sanada, M. Yokoi, F. Sanda, and T. Endo, “Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate,” Macromolecules, vol. 33, no. 12, pp. 4316–4320, 2000.
[157]
M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, “Ring-opening polymerization of ε-caprolactone by poly(ethylene glycol) by an activated monomer mechanism,” Macromolecular Rapid Communications, vol. 26, no. 8, pp. 643–648, 2005.
[158]
X. Lou, C. Detrembleur, and R. Jér?me, “Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer,” Macromolecules, vol. 35, no. 4, pp. 1190–1195, 2002.
[159]
J. Casas, P. V. Persson, T. Iversen, and A. Córdova, “Direct organocatalytic ring-opening polymerizations of lactones,” Advanced Synthesis and Catalysis, vol. 346, no. 9-10, pp. 1087–1089, 2004.
[160]
P. V. Persson, J. Schr?der, K. Wickholm, E. Hedenstr?m, and T. Iversen, “Selective organocatalytic ring-opening polymerization: a versatile route to carbohydrate-functionalized poly(∈-caprolactones),” Macromolecules, vol. 37, no. 16, pp. 5889–5893, 2004.
[161]
P. V. Persson, J. Casas, T. Iversen, and A. Córdova, “Direct organocatalytic chemoselective synthesis of a dendrimer-like star polyester,” Macromolecules, vol. 39, no. 8, pp. 2819–2822, 2006.
[162]
F. Sanda, H. Sanada, Y. Shibasaki, and T. Endo, “Star polymer synthesis from ε-caprolactone utilizing polyol/protonic acid initiator,” Macromolecules, vol. 35, no. 3, pp. 680–683, 2002.
[163]
F. Zeng, H. Lee, M. Chidiac, and C. Allen, “Synthesis and characterization of six-arm star poly(δ-valerolactone)-block-methoxy poly(ethylene glycol) copolymers,” Biomacromolecules, vol. 6, no. 4, pp. 2140–2149, 2005.
[164]
J. Y. Liu and L. J. Liu, “Ring-opening polymerization of ε-caprolactone initiated by natural amino acids,” Macromolecules, vol. 37, no. 8, pp. 2674–2676, 2004.
[165]
B. C. Wilson and C. W. Jones, “A recoverable, metal-free catalyst for the green polymerization of ε-caprolactone,” Macromolecules, vol. 37, no. 26, pp. 9709–9714, 2004.
[166]
Z. Jedliński, P. Kurcok, and M. Kowalczuk, “Polymerization of β-lactones initiated by potassium solutions,” Macromolecules, vol. 18, no. 12, pp. 2679–2683, 1985.
[167]
Z. Jedliński and M. Kowalczuk, “Nature of the active centers and the propagation mechanism of the polymerization of β-propiolactones initiated by potassium anions,” Macromolecules, vol. 22, no. 8, pp. 3242–3244, 1989.
[168]
Z. Jedliński, M. Kowalczuk, and P. Kurcok, “What is the real mechanism of anionic polymerization of β-lactones by potassium alkoxides? A critical approach,” Macromolecules, vol. 24, no. 5, pp. 1218–1219, 1991.
[169]
Z. Jedlinski, P. Kurock, W. Walach, H. Janeezek, and I. Radecka, “Polymerization of lactones, 17. Synthesis of ethylene glycol-L-lactide block copolymers,” Die Makromolekulare Chemie, vol. 194, no. 6, pp. 1681–1689, 1993.
[170]
P. Kurock, S. Penczek, J. Franck, and Z. Jedlinski, “Anionic polymerization of lactones. 14. Anionic block copolymerization of δ-valerolactone and L-lactide initiated with potassium methoxide,” Macromolecules, vol. 25, no. 9, pp. 2285–2289, 1992.
[171]
P. Kurcok, M. Kowalczuk, K. Hennek, and Z. Jedliński, “Anionic polymerization of β-lactones initiated with alkali-metal alkoxides: reinvestigation of the polymerization mechanism,” Macromolecules, vol. 25, no. 7, pp. 2017–2020, 1992.
[172]
A. P. Dove, Chemical Communications, vol. 6446, 2008.
[173]
O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, “Controlled ring-opening polymerization of lactide and glycolide,” Chemical Reviews, vol. 104, no. 12, pp. 6147–6176, 2004.
[174]
J. E. Kasperczyk, “Microstructure analysis of poly(lactic acid) obtained by lithium tert-butoxide as initiator,” Macromolecules, vol. 28, no. 11, pp. 3937–3939, 1995.
[175]
M. Bero, P. Dobrzynski, and J. Kasperczyk, Journal of Polymer Science Part A, vol. 73, p. 37, 1993.
[176]
M. Bero and J. Ksperczyk, Polymer, vol. 41, p. 391, 2000.
[177]
F. Hild, P. Haquette, L. Brelot, and S. Dagorne, “Synthesis and structural characterization of well-defined anionic aluminium alkoxide complexes supported by NON-type diamido ether tridentate ligands and their use for the controlled ROP of lactide,” Dalton Transactions, vol. 39, no. 2, pp. 533–540, 2010.
[178]
A. Kowalski, A. Duda, and S. Penczek, “Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1: polymerization of ε-caprolactone,” Macromolecular Rapid Communications, vol. 19, no. 11, pp. 567–572, 1998.
[179]
H. R. Kricheldorf, I. Kreiser-Saunders, and C. Boettcher, “Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study,” Polymer, vol. 36, no. 6, pp. 1253–1259, 1995.
[180]
P. J. A. In't Veld, E. M. Velner, P. van de Witte, J. Hamhuis, P. J. Dijkstra, and J. Feijen, “Melt block copolymerization of ε-caprolactone and L-lactide,” Journal of Polymer Science Part A, vol. 35, no. 2, pp. 219–226, 1997.
[181]
Y. J. Du, A. J. Nijenhous, C. Bastiassen, and P. J. Lemstra, Journal of Macromolecular Science Part A, vol. 32, p. 1061, 1995.
[182]
G. Schwach, J. Coudane, R. Engel, and M. Vert, “More about the polymerization of lactides in the presence of stannous octoate,” Journal of Polymer Science Part A, vol. 35, no. 16, pp. 3431–3440, 1997.
[183]
X. Zhang, D. A. Macdonald, M. F. A. Goosen, and K. B. Mcauley, “Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances,” Journal of Polymer Science Part A, vol. 32, no. 15, pp. 2965–2970, 1994.
[184]
PH. Dubois, N. Ropson, R. Jér?me, and PH. Teyssié, “Macromolecular engineering of polylactones and polylactides. 19. Kinetics of ring-opening polymerization of ε-caprolactone initiated with functional aluminum alkoxides,” Macromolecules, vol. 29, no. 6, pp. 1965–1975, 1996.
[185]
J. Libiszowski, A. Kowalski, A. Duda, and S. Penczek, “Kinetics and mechanism of cyclic esters polymerization initiated with covalent metal carboxylates, 5: end-group studies in the model ε-caprolactone and L,L-dilactide/tin(II) and zinc octoate/butyl alcohol systems,” Macromolecular Chemistry and Physics, vol. 203, no. 10-11, pp. 1694–1701, 2002.
[186]
H. R. Kricheldorf, I. Kreiser-Saunders, and A. Stricker, “Polylactones 48. -initiated polymerizations of lactide: a mechanistic study,” Macromolecules, vol. 33, no. 3, pp. 702–709, 2000.
[187]
M. Bero and J. Kasperczyk, “Coordination polymerization of lactides, 5: influence of lactide structure on the transesterification processes in the copolymerization with ε-caprolactone,” Macromolecular Chemistry and Physics, vol. 197, no. 10, pp. 3251–3258, 1996.
[188]
X. Liu, K. Li, X. Feng, and Y. Cao, “Preparation of propargyl-terminated polylactide by the bulk ring-opening polymerization,” Journal of Macromolecular Science Part A, vol. 46, no. 10, pp. 937–942, 2009.
[189]
C. Gordin, C. Delaite, H. Medlej, J.-L. Delphine, K. Hariri, and M. Rusu, “Synthesis of ABC miktoarm star block copolymers from a new heterotrifunctional initiator by combination of ATRP and ROP,” Polymer Bulletin, vol. 63, no. 6, p. 789, 2009.
[190]
J. Yu-shun, S. Yu-wei, G. Wen-li, and L. Shu-xin, Huaxue Yu Nianhe, vol. 30, p. 35, 2008.
[191]
M. Jalabert, C. Fraschini, and R. E. Prud'Homme, “Synthesis and characterization of poly(L-lactide)s and poly(D-lactide)s of controlled molecular weight,” Journal of Polymer Science Part A, vol. 45, no. 10, pp. 1944–1955, 2007.
[192]
W. Hai-yan, L. Feng, L. Shi-piao, and C. Xiao-huan, Huaxue Yu Shengwu Gongcheng, vol. 22, p. 29, 2005.
[193]
S. Jing, W. Peng, Z. Ke, T. Liu-yi, Z. Tong, and Z. Bao-xiu, Gaoxiao Huaxue Gongcheng Xuebao, vol. 19, p. 498, 2005.
[194]
F. Yang, L. Liu, Z. Wei, Y. Zhao, C. Zhang, and M. Qi, “Effect of chain transfer agent to synthesis of poly(D,L-)lactides,” Hecheng Shuzhi Ji Suliao, vol. 22, no. 2, pp. 38–41, 2005.
[195]
Z. Ke, W. Peng, L. Wen-ke, and S. Jing, Gaofenzi Cailiao Kexue Yu Gongcheng, vol. 20, p. 46, 2004.
[196]
J. Ma, H. Cao, Y. Li, and Y. Li, “Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers,” Journal of Biomaterials Science, Polymer Edition, vol. 13, no. 1, pp. 67–80, 2002.
[197]
Z. Yao-ming, M. Hang-zhen, C. Jun-wu, and G. Qian-fei, Huanan Ligong Daxue Xuebao, Ziran Kexueban, vol. 28, p. 53, 2000.
[198]
D. Chen and B. Sun, “New tissue engineering material copolymers of derivatives of cellulose and lactide: their synthesis and characterization,” Materials Science and Engineering C, vol. 11, no. 1, pp. 57–60, 2000.
[199]
Z. Guodong, F. Xinde, and G. Zhongwei, Gaofenzi Xuebao, vol. 4, p. 509, 1998.
[200]
Z. Wanxi, Suliao Gongye, vol. 34, p. 1, 2006.
[201]
M. Yasushi, Shokubai, vol. 42, p. 228, 2000.
[202]
A. Kafrawy and S. W. Shalaby, “A new synthesis of 1,5-dioxepan-2-one,” Journal of Polymer Science Part A, vol. 25, no. 9, pp. 2629–2630, 1987.
[203]
A. J. Neijenhuis, D. W. Grijmpa, and A. J. Pennings, “Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization,” Macromolecules, vol. 25, no. 24, pp. 6419–6424, 1992.
[204]
G. Rafler and J. Dahlmann, “Biodegradable polymers. 6th comm. Polymerization of ε-caprolactone,” Acta Polymerica, vol. 43, no. 2, pp. 91–95, 1992.
[205]
J. W. Leenslag and A. J. Pennings, “Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate,” Die Makromolekulare Chemie, vol. 188, no. 8, pp. 1809–1814, 1987.
[206]
Y. J. Du, P. J. Lemstra, A. J. Neijenhuis, H. A. M. Vanaert, and C. Bastiaannsen, “ABA type copolymers of lactide with poly(ethylene glycol). Kinetic, mechanistic, and model studies,” Macromolecules, vol. 28, no. 7, pp. 2124–2132, 1995.
[207]
A. Duda, S. Penczek, A. Kowalski, and J. Libiszowski, “Polymerizations of ε-caprolactone and L,L-dilactide initiated with stannous octoate and stannous butoxide—a comparison,” Macromolecular Symposia, vol. 153, pp. 41–53, 2000.
[208]
A. Kowalski, A. Duda, and S. Penczek, “Mechanism of cyclic ester polymerization initiated with Tin(II) octoate. 2. 1 macromolecules fitted with Tin(II) alkoxide species observed directly in MALDI-TOF spectra,” Macromolecules, vol. 33, no. 3, pp. 689–695, 2000.
[209]
A. Kowalski, A. Duda, and S. Penczek, “Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide,” Macromolecules, vol. 33, no. 20, pp. 7359–7370, 2000.
[210]
M. Ryner, K. Stridsberg, A.-C. Albertsson, H. von Schenck, and M. Svensson, “Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. A theoretical study,” Macromolecules, vol. 34, no. 12, pp. 3877–3881, 2001.
[211]
A. Kowalski, J. Libiszowski, A. Duda, and S. Penczek, “Polymerization of l, l-dilactide initiated by tin(ii) butoxide,” Macromolecules, vol. 33, no. 6, pp. 1964–1971, 2000.
[212]
H. R. Kricheldorf and I. Kreiser-Saunders, “Polylactones 49: Bu4Sn-initiated polymerizations of ε-caprolactone,” Polymer, vol. 41, no. 11, pp. 3957–3963, 2000.
[213]
H. R. Kricheldorf, M. V. Sumbél, and I. Kreiser-Saunders, “Polylactones. 20. Polymerization of ∈-caprolactone with tributyltin derivatives: a mechanistic study,” Macromolecules, vol. 24, no. 8, pp. 1944–1949, 1991.
[214]
H. R. Kricheldorf, C. Boettcher, and K.-U. T?nnes, “Polylactones: 23. Polymerization of racemic and meso d,l-lactide with various organotin catalysts-stereochemical aspects,” Polymer, vol. 33, no. 13, pp. 2817–2824, 1992.
[215]
K. Stridsberg and A.-C. Albertsson, “Ring-opening polymerization of 1,5-dioxepan-2-one initiated by a cyclic tin-alkoxide initiator in different solvents,” Journal of Polymer Science Part A, vol. 37, no. 16, pp. 3407–3417, 1999.
[216]
H. R. Kricheldorf and S. Eggerstedt, “Macrocycles 2: living macrocyclic polymerization of ε-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator,” Macromolecular Chemistry and Physics, vol. 199, no. 2, pp. 283–290, 1998.
[217]
H. Von Schenk, M. Ryner, A.-C. Albertsson, and M. Svensson, Macromolecules, vol. 35, p. 1536, 2002.
[218]
K. Stridsberg, M. Ryner, and A.-C. Albertsson, “Dihydroxy-terminated poly(L-lactide) obtained by controlled ring-opening polymerization: investigation of the polymerization mechanism,” Macromolecules, vol. 33, no. 8, pp. 2862–2869, 2000.
[219]
K. Stridsberg and A.-C. Albertsson, “Controlled ring-opening polymerization of L-lactide and 1,5-dioxepan-2-one forming a triblock copolymer,” Journal of Polymer Science Part A, vol. 38, no. 10, pp. 1774–1784, 2000.
[220]
C.-H. Zhang and F. Liu, “Synthesis of molecular weight controllable polylactide by using organocatalyst,” Gongneng Cailiao, vol. 40, no. 9, pp. 1502–1505, 2009.
[221]
A. L?fgren, A.-C. Albertsson, PH. Dubois, R. Jér?me, and PH. Teyssié, “Synthesis and characterization of biodegrable homopolymers and block copolymers based on 1,5-dioxepan-2-one,” Macromolecules, vol. 27, no. 20, pp. 5556–5562, 1994.
[222]
N. Rapson, A.-C. Albertsson, A.-C. Dubois, R. Jerome, and P. Teyese, Macromolecules, vol. 28, p. 3027, 1995.
[223]
A. L?fgren and A.-C. Albertsson, “Synthesis and characterization of high molecular weight poly(1,5-dioxepan-2-one) with narrow molecular weight distribution,” Polymer, vol. 36, no. 19, pp. 3753–3759, 1995.
[224]
S. Lundmark, M. Sjoling, and A. C. Albertsson, “Polymerization of oxepan-2,7-dione in solution and synthesis of block copolymers of oxepan-2,7-dione and 2-oxepanone,” Journal of Macromolecular Science, Part A, vol. 28, no. 1, pp. 15–29, 1991.
[225]
A. Lofgren, R. Renstad, and A.-C. Albertsson, “Synthesis and characterization of a new degradable thermoplastic elastomer based on 1,5-dioxepan-2-one and ε-caprolactone,” Journal of Applied Polymer Science, vol. 55, no. 11, pp. 1589–1600, 1995.
[226]
T. Ouhadi, C. Stevens, and P. Teyssié, “Mechanism of ε-caprolactone polymerization by aluminum alkoxides,” Die Makromolekulare Chemie. Supplement, vol. 1, no. S19751, pp. 191–201, 1975.
[227]
A. Kowalski, A. Duda, and S. Penczek, “Polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer,” Macromolecules, vol. 31, no. 7, pp. 2114–2122, 1998.
[228]
M. Bero, J. Kasperezyk, and Z. Jedlinski, “Coordination polymerization of lactides, 1. Structure determination of obtained polymers,” Die Makromolekulare Chemie, vol. 191, no. 10, pp. 2287–2296, 1990.
[229]
P. Dubois, C. Jacobs, R. Jér?me, and PH. Teyssié, “Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide,” Macromolecules, vol. 24, no. 9, pp. 2266–2270, 1991.
[230]
A. Duda, Z. Florjanezyk, A. Hofman, S. Slomkowski, and S. Penezek, Macromolecules, vol. 23, p. 1640, 1990.
[231]
G. Montaudo, M. S. Montaudo, C. Puglisi, et al., Macromolecules, vol. 29, p. 1399, 1996.
[232]
A. Duda and S. Penezek, Macromolecular Symposia, vol. 47, p. 127, 1991.
[233]
A. Duda, “Polymerization of ε-caprolactone initiated by aluminum isopropoxide carried out in the presence of alcohols and diols. Kinetics and mechanism,” Macromolecules, vol. 29, no. 5, pp. 1399–1406, 1996.
[234]
A. Duda and S. Penezek, Macromolecules, vol. 27, p. 1867, 1994.
[235]
A. Kowalski, A. Duda, and S. Penczek, “Polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer,” Macromolecules, vol. 31, no. 7, pp. 2114–2122, 1998.
[236]
S. Inoue, “From living to 'immortal' polymerization,” Journal of Macromolecular Science, Part A, vol. A25, no. 5–7, pp. 571–582, 1988.
[237]
K. Shimasaki, T. Aida, and S. Inoue, “Living polymerization of δ-valerolactone with aluminum porphyrin. Trimolecular mechanism by the participation of two aluminum porphyrin molecules,” Macromolecules, vol. 20, no. 12, pp. 3076–3080, 1987.
[238]
S. J. Mclain and N. F. Drysdale, “Yttrium and rare earth compounds catalyzed lactone polymerization,” US Patent 5028667, 1991.
[239]
S. J. Mclain and N. F. Drysdale, Polymer Preprints, American Chemical Society, vol. 33, p. 463, 1992.
[240]
W. Stevels, P. J. Dijkstra, and Feijen, Trends in Polymer Science, vol. 5, p. 300, 1997.
[241]
W. M. Stevels, M. J. K. Ankoné, P. J. Dijkstra, and J. Feijen, “Kinetics and mechanism of L-lactide polymerization using two different yttrium alkoxides as initiators,” Macromolecules, vol. 29, no. 19, pp. 6132–6138, 1996.
[242]
Z. Q. Shen, Y. Q. Shen, J. Q. Sun, F. Y. Zhang, and Y. F. Zhang, Chinese Science Bulletin, vol. 39, no. 5, p. 1096, 1994.
[243]
Z. Q. Shen, Y. Q. Shen, J. Q. Sun, F. Y. Zhang, and Y. F. Zhang, Polymer, vol. 27, p. 59, 1995.
[244]
W. M. Stevels, M. J. K. Ankoné, P. J. Dijkstra, and J. Feijen, “Kinetics and mechanism of ∈-caprolactone polymerization using yttrium alkoxides as initiators,” Macromolecules, vol. 29, no. 26, pp. 8296–8303, 1996.
[245]
W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra, and J. Feijen, “Versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols,” Macromolecules, vol. 29, no. 9, pp. 3332–3333, 1996.
[246]
S. Agrawal, C. Mast, K. Dehnicke, and A. Grenier, “Rare earth metal initiated ring-opening polymerization of lactones,” Macromolecular Rapid Communication, vol. 21, no. 5, pp. 195–212, 2000.
[247]
Y. Kim and J. G. Verkade, “Novel titanatranes with different ring sizes: syntheses, structures, and lactide polymerization catalytic capabilities,” Organometallics, vol. 21, no. 12, pp. 2395–2399, 2002.
[248]
Y. Kim, P. N. Kapoor, and J. G. Verkade, “ 2Ta[tris(2-oxy-3,5-dimethylbenzyl)amine]: structure and lactide polymerization activities,” Inorganic Chemistry, vol. 41, no. 18, pp. 4834–4838, 2002.
[249]
Y. Kim and J. G. Verkade, “A tetrameric titanium alkoxide as a lactide polymerization catalyst,” Macromolecular Rapid Communications, vol. 23, no. 15, pp. 917–921, 2002.
[250]
Y. Takashima, Y. Nakayama, and Y. Nakayama, “Polymerizations of cyclic esters catalyzed by titanium complexes having chalcogen-bridged chelating diaryloxo ligands,” Macromolecules, vol. 35, no. 20, pp. 7538–7544, 2002.
[251]
D. A. Culkin, W. Jeong, S. Csihony, E. D. Gomez, N. P. Balsara, J. L. Hedrick, and R. M. Waymouth, “Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts,” Angewandte Chemie International Edition, vol. 46, no. 15, pp. 2627–2630, 2007.
[252]
B. Yanbin, H. Xiaqin, and L. Ziqiang, Gaofenzi Tongbao, vol. 3, p. 46, 2006.
[253]
G. Schwach, J. Coudane, R. Engel, and M. Vert, “Stannous octoate-versus zinc-initiated polymerization of racemic lactide—effects on configurational structures,” Polymer Bulletin, vol. 32, no. 5-6, pp. 617–623, 1994.
[254]
G. Schwach, J. Coudane, R. Engel, and M. Vert, “Stannous octoate-versus zinc-initiated polymerization of racemic lactide—effects on configurational structures,” Polymer Bulletin, vol. 32, no. 5-6, pp. 617–623, 1994.
[255]
M. Vert, G. Schwach, and J. Coudane, “Present and future of PLA polymers,” Journal of Macromolecular Science, Part A, vol. 32, no. 4, pp. 787–796, 1995.
[256]
G. Schwach, J. Coudane, R. Engel, and M. Vert, “Ring opening polymerization of D,L-Lactide in the presence of zinc metal and zinc lactate,” Polymer International, vol. 46, no. 3, pp. 177–182, 1998.
[257]
G. Schwach and M. Vert, “In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction,” International Journal of Biological Macromolecules, vol. 25, no. 1–3, pp. 283–291, 1999.
[258]
G. Schwach, J. Coudane, R. Engel, and M. Vert, “Influence of polymerization conditions on the hydrolytic degradation of poly(DL-lactide) polymerized in the presence of stannous octoate or zinc-metal,” Biomaterials, vol. 23, no. 4, pp. 993–1002, 2002.
[259]
M. Vert, G. Schwach, R. Engel, and J. Coudane, “Something new in the field of PLA/GA bioresorbable polymers?” Journal of Controlled Release, vol. 53, no. 1–3, pp. 85–92, 1998.
[260]
H. R. Kricheldorf and D.-O. Damrau, “Polylactones, 37: polymerizations of L-lactide initiated with Zn(II) L-lactate and other resorbable Zn salts,” Macromolecular Chemistry and Physics, vol. 198, no. 6, pp. 1753–1766, 1997.
[261]
H. R. Kricheldorf, D.-O. Damru, and I. Krieser-Saunders, Macromolecular Chemistry and Physics, vol. 199, p. 1081, 1998.
[262]
H. R. Kricheldorf and D.-O. Damru, “Polylactones, 42. Zn L-lactate-catalyzed polymerizations of 1,4-dioxan-2-one,” Macromolecular Chemistry and Physics, vol. 199, no. 6, pp. 1089–1097, 1998.
[263]
P. Dobrzyński, J. Kasperczyk, and M. Bero, “Application of calcium acetylacetonate to the polymerization of glycolide and copolymerization of glycolide with ε-caprolactone and L-lactide,” Macromolecules, vol. 32, no. 14, pp. 4735–4737, 1999.
[264]
Z. Zhong, S. Schneiderbauer, P. J. Dijkstra, M. Westerhausen, and J. Feijen, “Fast and living ring-opening polymerization of L-lactide initiated with in-situ-generated calcium alkoxides,” Journal of Polymers and the Environment, vol. 9, no. 1, pp. 31–38, 2001.
[265]
H. R. Kricheldorf, T. Mang, and J. M. Jonté, “Polylactones. 1. Copolymerization of glycolide and ε-caprolactone,” Macromolecules, vol. 17, no. 10, pp. 2173–2181, 1984.
[266]
A. Finna and A.-C. Albertsson, “New functionalized polyesters to achieve controlled architectures,” Journal of Polymer Science Part A, vol. 42, no. 3, pp. 444–452, 2003.