Liquid composite molding (LCM) processes are widely used to manufacture composite parts for the automotive industry. An appropriate selection of the materials and proper optimization of the manufacturing parameters are keys to produce parts with improved mechanical properties. This paper reports on a study of biobased composites reinforced with nanoclay particles. A soy-based unsaturated polyester resin was used as synthetic matrix, and glass and flax fiber fabrics were used as reinforcement. This paper aims to improve mechanical and flammability properties of reinforced composites by introducing nanoclay particles in the unsaturated polyester resin. Four different mixing techniques were investigated to improve the dispersion of nanoclay particles in the bioresin in order to obtain intercalated or exfoliated structures. An experimental study was carried out to define the adequate parameter combinations between vacuum pressure, filling time, and resin viscosity. Two manufacturing methods were investigated and compared: RTM and SCRIMP. Mechanical properties, such as flexural modulus and ultimate strength, were evaluated and compared for conventional glass fiber composites (GFC) and flax fiber biocomposites (GFBiores-C). Finally, smoke density analysis was performed to demonstrate the effects and advantages of using an environment-friendly resin combined with nanoclay particles. 1. Introduction Recent advances in the composites field are related to the addition of nanoparticles such as carbon nanotubes, nanoclays, or silicates nanoparticles to improve the thermal, mechanical, and electrical properties. Nanoparticle additives, like nanoclay, are widely used in various industries such as cable coatings, adhesives, inks, pharmaceutical and automotive [1, 2]. One of the most common nanoclay forms is montmorillonite (MMT) with a particle thickness of 1?nm and 70 to 100?nm crosswise silica platelets [3, 4]. The choice and extensive use of montmorillonite nanoparticles in previous research is mainly due to the fact that they are commonly available and inexpensive [5]. Minimal content (1–5%?wt) of such additives can improve the reinforcement of the polymer matrix by increasing flexural modulus by up to 31% and lowering the coefficient of linear thermal expansion [6–8]. However, the incorporation of nanoparticles into the liquid matrix is still a challenge, because it requires proper dispersion and exfoliation of the nanoclay. Since they are hydrophilic in their natural state and unevenly distributed, they must be organically modified to avoid agglomeration between
References
[1]
S. Abend and G. Lagaly, “Sol-gel transitions of sodium montmorillonite dispersions,” Applied Clay Science, vol. 16, no. 3-4, pp. 201–227, 2000.
[2]
W.-F. Lee and Y.-T. Fu, “Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels,” Journal of Applied Polymer Science, vol. 89, no. 13, pp. 3652–3660, 2003.
[3]
S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003.
[4]
F. Gao, “Clay/polymer composites: the story,” Materials Today, vol. 7, no. 11, pp. 50–55, 2004.
[5]
L. A. Utracki, M. Sepehr, and E. Boccaleri, “Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs),” Polymers for Advanced Technologies, vol. 18, no. 1, pp. 1–37, 2007.
[6]
F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: from fundamentals to nanocomposites,” Materials Science and Engineering R, vol. 63, no. 3, pp. 100–125, 2009.
[7]
D. Dean, A. M. Obore, S. Richmond, and E. Nyairo, “Multiscale fiber-reinforced nanocomposites: synthesis, processing and properties,” Composites Science and Technology, vol. 66, no. 13, pp. 2135–2142, 2006.
[8]
J. Denault and B. Labrecque, “Groupe technologique sur les nanocomposites polymères—PNC-Tech,” 2002, http://ww2.imi.nrc.ca/francais/PDF/factsheets/pnc-tech.pdf.
[9]
S. Nazare, B. K. Kandola, and A. R. Horrocks, “Flame-retardant unsaturated polyester resin incorporating nanoclays,” Polymers for Advanced Technologies, vol. 17, no. 4, pp. 294–303, 2006.
[10]
M. Bartholmai and B. Schartel, “Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system,” Polymers for Advanced Technologies, vol. 15, pp. 355–364, 2004.
[11]
M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1, pp. 1–63, 2000.
[12]
M. Haq, R. Burgueno, A. K. Mohanty, and M. Misra, “Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: tensile properties, efficiency, and limits,” Composites Part A: Applied Science and Manufacturing, vol. 40, no. 4, pp. 394–403, 2009.
[13]
T. J. Pinnavaia and G. W. Beall, Polymer—8 Clay Nanocomposites, vol. 51, John Wiley & Sons, Chichester, UK, 2000.
[14]
D. Burgentzle, J. Duchet, J. F. Gerard, A. Jupin, and B. Fillon, “Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents,” Journal of Colloid and Interface Science, vol. 278, no. 1, pp. 26–39, 2004.
[15]
I. Ortega, “Fabrication et caracterisation de nanocomposites a matrice epoxy,” , M.S. dissertation, Mechnanical Engineering, Ecole Polytechnique, Montreal, Canda, 2008.
[16]
F. Hussain, D. Dean, A. Haque, and A. M. Shamsuzzoha, “S2 glass/vinylester polymer nanocomposites: manufacturing, structures, thermal and mechanical properties,” Journal of Advanced Materials, vol. 37, no. 1, pp. 16–27, 2005.
[17]
L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, “Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM),” Composites Science and Technology, vol. 66, no. 13, pp. 2116–2125, 2006.
[18]
H. Miyagawa, A. K. Mohanty, R. Burgueno, L. T. Drzal, and M. Misra, “Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin,” Journal of Polymer Science Part B, vol. 45, no. 6, pp. 698–704, 2007.
[19]
M. Haq, R. Burgueno, A. K. Mohanty, and M. Misra, “Bio-based unsaturated polyester/layered silicate nanocomposites: Characterization and thermo-physical properties,” Composites Part A: Applied Science and Manufacturing, vol. 40, no. 4, pp. 540–547, 2009.
[20]
C. Weinong, S. Bo, L. Zengshe, and S. Erhan, “Compressive properties of epoxidized soybean oil/clay nanocomposites,” International Journal of Plasticity, vol. 22, no. 8, pp. 1549–1568, 2006.
[21]
Z. Liu, S. Z. Erhan, and J. Xu, “Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites,” Polymer, vol. 46, no. 23, pp. 10119–10127, 2005.
[22]
H. Uyama, M. Kuwabara, T. Tsujimoto, M. Nakano, A. Usuki, and S. Kobayashi, “Green nanocomposites from renewable resources: plant oil-clay hybrid materials,” Chemistry of Materials, vol. 15, no. 13, pp. 2492–2494, 2003.
[23]
R. Kozowski and M. Wadyka-Przybylak, “Flammability and fire resistance of composites reinforced by natural fibers,” Polymers for Advanced Technologies, vol. 19, no. 6, pp. 446–453, 2008.
[24]
N. R. C. o. Canada, “From fiber glass to biofibres,” 2010, http://www.nrc-cnrc.gc.ca/eng/dimensions/issue3/flax.html.
[25]
P. J. Roe and M. P. Ansell, “Jute-reinforced polyester composites,” Journal of Materials Science, vol. 20, no. 11, pp. 4015–4020, 1985.
[26]
M. K. Sridhar, G. Basavarappa, S. G. Kasturi, and N. Balasubramanian, “Mechanical properties of jute-polyester composites,” Indian Journal of Technology, vol. 22, no. 6, pp. 213–215, 1984.
[27]
A. N. Shah and S. C. Lakkad, “Mechanical properties of jute-reinforced plastics,” Fibre Science and Technology, vol. 15, no. 1, pp. 41–46, 1981.
[28]
E. T. N. Bisanda and M. P. Ansell, “The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites,” Composites Science and Technology, vol. 41, no. 2, pp. 165–178, 1991.
[29]
S. V. Prasad, C. Pavithran, and P. K. Rohatgi, “Alkali treatment of coir fibres for coir-polyester composites,” Journal of Materials Science, vol. 18, no. 5, pp. 1443–1454, 1983.
[30]
W. D. Brouwer, “Natural fibre composites in structural components: alternative applications for Sisal?” 2010, http://www.fao.org/docrep/004/y1873e/y1873e0a.htm.
[31]
S. Horold, “Phosphorus flame retardants in thermoset resins,” Polymer Degradation and Stability, vol. 64, no. 3, pp. 427–431, 1999.
[32]
S. V. Levchik, “Halogen-free approach in fire retardancy of thermoplastic polyesters,” Recent Advances in Flame Retardancy of Polymers, vol. 13, pp. 296–314, 2002.
[33]
A. H. B. Kandola and D. Price, “Nanocomposites,” in Fire Retardant Materials, chapter 6, Woodhead Publishing, Cambridge, UK, 2001.
[34]
J. W. Gilman, C. L. Jackson, A. B. Morgan et al., “Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites,” Chemistry of Materials, vol. 12, no. 7, pp. 1866–1873, 2000.
[35]
J. W. Gilman, “Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites,” Applied Clay Science, vol. 15, no. 1-2, pp. 31–49, 1999.
[36]
J. Gilman, T. Kashiwagi, A. Morgan, et al., Flammability of polymer clay nanocomposites consortium: year one annual report, 2000.
[37]
C. Wilkie, “Recent advanced in fire retardancy of polymerclay nanocomposite,” in Recent Advances in Flame Retardancy of Polymers, vol. 13, pp. 206–217, Business Communications Company, Norwalk, Calif, USA, 2002.
[38]
Q. Govignon, S. Bickerton, J. Morris, and P. A. Kelly, “Full field monitoring of the resin flow and laminate properties during the resin infusion process,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 9, pp. 1412–1426, 2008.
[39]
J. S. Leclerc and E. Ruiz, “Porosity reduction using optimized flow velocity in Resin Transfer Molding,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 12, pp. 1859–1868, 2008.
[40]
R. Wagener and T. J. G. Reisinger, “A rheological method to compare the degree of exfoliation of nanocomposites,” Polymer, vol. 44, no. 24, pp. 7513–7518, 2003.
[41]
R. Krishnamoorti, J. Ren, and A. S. Silva, “Shear response of layered silicate nanocomposites,” Journal of Chemical Physics, vol. 114, no. 11, pp. 4968–4973, 2001.
[42]
J. C. Pierre, C. R. D. K. Daniel, and P. C. Raj, Rheology of Polymeric Systems: Principles and Applications, Hanser Publishers, New York, NY, USA, 1st edition, 1997.
[43]
T. Phillips, “The physics of whipped cream,” 2008, http://science.nasa.gov/science-news/science-at-nasa/2008/25apr_cvx2.
[44]
F. A. Morrison, Understanding Rheology, Oxford University Press, Nwe York, NY, USA, 2001.
[45]
J. D. G. Durán, M. M. Ramos-Tejada, F. J. Arroyo, and F. González-Caballero, “Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction,” Journal of Colloid and Interface Science, vol. 229, pp. 107–117, 2000.