全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

捏拢效应与P-Δ效应对地震延性需求和损伤指标的影响

, PP. 94-105

Keywords: 捏拢效应,P-Δ效应,地震延性需求,Park-Ang地震损伤指标,Bouc-Wen模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

文中定量地分析了捏拢效应和P-Δ效应对非弹性单自由度体系的地震延性需求和Park-Ang地震损伤指标的概率统计特征的影响。采用Bouc-Wen模型描述具有P-Δ效应、捏拢效应、强度退化、刚度退化等典型特性的恢复力-位移滞回曲线;根据非弹性单自由度体系在69条强震记录作用下的动力响应,定量地分析了捏拢效应和P-Δ效应对地震延性需求和Park-Ang地震损伤指标的均值和变异系数的影响,并建立了地震延性需求的概率预测模型。计算结果表明,捏拢效应和由重力引起的P-Δ效应对地震延性需求的影响较大,而由竖向地震激励引起的P-Δ效应对地震延性需求的影响很小;对于短周期体系,建议采用对数正态或Frechet分布来描述地震延性需求的概率分布;对于长周期体系,采用Frechet分布则更为合理。

References

[1]  童根树,赵永峰.动力P-Δ效应对地震力调整系数的影响[J].浙江大学学报:工学版,2007,41(1):120-126.
[2]  Gupta A,KrawinklerH.Dynamic P-Δ effects for flexible in elastic steel structures[J].Journal of Structural Engineering-ASCE.2000,126(1):145-154.
[3]  Williamson EB.Evaluation of damage and P-Δ effects for system under earthquake excitation[J].Journal of Structural Engineering-ASCE,2003,129(8):1036-1046.
[4]  Kalkan E,GraizerV.Coupledtilt and trans lational ground motion respon sespectra[J].Journal of Structural Engineering-ASCE,2007,133(5):605-619.
[5]  翟长海,孙亚民,谢礼立.考虑P-Δ效应的等延性位移比谱[J].哈尔滨工业大学学报,2007,39(10):1513-1516.
[6]  Ma F,Ng CH and A javakom N.Onsystem identification and response prediction of degrading structures[J].Structural Control& Health Monitoring,2006,13(1):347-364.
[7]  Foliente GC,Singh MP,NooriM N.Equivalent linearization of generally pinching hysteretic,degrading systems[J].Earthquake Engineering& Structural Dynamics,1996,25(6):611-629.
[8]  Goda K,Hong HP,Lee CS.Probabilistic characteristics of seismic ductility dem and of SDOF systems with Bouc-Wen hysteretic behaviour[J].Journal of Earthquake Engineering,2009,13(5):600-622.
[9]  Shampine LF,Reichelt MW.The MATLABODE suite[J].SIAM Journal of Scientific Computing,1997,18(1):1-22.
[10]  Park YJ,Ang AHS.Mechanistic seismic damage model for rein forced concrete[J].Journal of Structural Engineering-ASCE,1985,111(4):722-739.
[11]  Marano GC,Greco R.Damage and ductility dem and spectra assessment of hysteretic degrading systems subject to stoch astic seismic loads[J].Journal of Earthquake Engineering,2006,10(5):615-640.
[12]  Pacific Earthquake Engineering Research(PEER) Center.Next generation attenuation database.[D B] http://peer.berkeley.edu/nga/index.hmt.l2007.
[13]  Hong HP,Goda K.Orientation-dependent ground-motion measure for seismic-hazard assessment[J].Bulletin of the Seism ological Society of America,2007,97:1525-1538.
[14]  Abraham son NA,SilvaW J.Empirical response spectral at tenuation relations for shallow crustal earthquakes[J].Seismo logical Research Letters,1997,68(1):94-127.
[15]  Boore DM,Joyner WB,Fumal TE.Equations for estimating horizontal response spectra and peak acceleration from western North America earthquakes:Asummary of recent work[J].Seismological Research Letters,1997,68(1):128-153.
[16]  Steidl JH,LeeY.The SCEC Phase III strong-motion database[J].Bullet in of the Seism ological Society of America,2000,90(6B):S113-S135.
[17]  Campbell KW,Bozorgnia Y.Updated near-source ground-motion(attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra[J].Bullet in of the Seismological Society of America,2003,93(1):314-331.
[18]  Hong HP,Hong P.Assessment of ductility demand and reliability of bilinear single-degree-of-freedom systems under earthquake loading[J].Canadian Journal of Civil Engineering,2007,34(12):1606-1615.
[19]  杨 伟,欧进萍.基于能量原理的Park & Ang损伤模型简化计算方法[J].地震工程与工程振动,2009,29(2):159-165.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133