全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于概率地震需求模型的隔震桥梁易损性对比

DOI: 10.13197/j.eeev.2014.06.1.hes.001, PP. 1-10

Keywords: 失效概率,连续梁桥,易损性分析,破坏指标,位移延性

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,通常采用确定性方法对桥梁隔震效果进行分析,即通过隔震与非隔震地震响应进行对比得到隔震效果;而概率方法对隔震桥梁进行分析时又大多仅分析其失效概率,很少从失效概率的角度开展隔震与非隔震桥梁对比研究.本文利用概率性地震需求分析模型分别对隔震与非隔震连续梁桥进行了地震易损性分析.在考虑桥梁结构及地震动参数随机性的基础上,以墩柱位移延性比和支座相对位移比作为破坏指标,定义并量化了隔震与非隔震桥梁桥墩和支座的五种极限破坏状态.利用传统可靠度概率分析方法通过非线性时程分析生成了桥墩和支座的易损性曲线,对比分析了隔震与非隔震桥梁墩柱和支座在不同破坏状态下的超越概率.研究结果表明从易损性对比的角度分析,相比于非隔震连续梁桥,隔震连续梁桥在地震动作用下表现出了较好的抗震性能,各破坏状态下构件的超越概率较小.

References

[1]  Kevin M, Bozidar S, Seismic demands for performance-based design of bridge[R]. Pacific Earthquake Engineering Research Center,University of California, Berkeley, 2003.
[2]  Nielson B G, Desroches R. Seismic fragility methodology for highway bridges[C]// Proceedings of the 2006 Structures Congress, 2006.
[3]  李立峰, 吴文朋, 黄佳梅, 等. 板式橡胶支座地震易损性分析[J]. 湖南大学学报, 2011, 38(11): 1-6. LI Lifeng, WU Wenpeng, HUANG Jiamei, et al. Research on the seismic vulnerability analysis of laminated rubber bearing[J], Journal of Hunan Uiv-ersity(Natural Sciences), 2011, 38(11): 1-6.(in Chinese)
[4]  于晓辉, 吕大刚, 王光远. 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30(8): 172-179. YU Xiaohui, LU Dagang, WANG Guangyuan. Discussions on probability seismic demand models[J]. Engineering Mechanics, 2013, 30(8): 172-179.(in Chinese)
[5]  郑凯峰, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013 30(5): 165-171. ZHENG Kaifeng, CHEN Libo, ZHUANG Weilin, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013 30(5): 165-171.(in Chinese)
[6]  Park K S, Jung H J, Lee I W. A comparative study on aseismic performance of base isolation systems for multi-span continuous bridge[J].Engineering Structures, 2002, 24: 1001-1013.
[7]  Jangid R S. Optimal friction pendulum system for near-fault motions[J].Engineering Structures, 2005, 27: 349-359.
[8]  Jangid R S. Optimal lead-rubber isolation bearings for near-fault motions[J].Engineering Structures, 2007, 29: 2503-2513.
[9]  Karim K R, Yamazaki F. Effect of isolation on fragility curves of highway bridges based on simplified approach[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 414-426.
[10]  Zhang J, Huo Y L. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J]. Engineering Structures, 2009, 31: 1648-1660.
[11]  吕大刚, 于晓辉, 潘 峰, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 20(1): 7-15. LU Dagang, YU Xiaohui, PAN Feng, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake Engineering, 2010, 20(1): 7-15.(in Chinese)
[12]  Hwang H,. Liu J B, Chiu Y H. Seismic fragility analysis of highway bridges[R]. Memphis: Mid-Ameirica Earthquake Center, 2001.
[13]  Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(2): 1224-1231.
[14]  JT/T663-2006公路桥梁板式橡胶支座规格系列[S]. 北京: 人民交通出版社, 2007. JT/T663-2006 Series of Elastomeric Pad bearings for Highway Bridges[S]. Beijing: China Communication Press, 2007.(In Chinese)
[15]  Tavares D H, Padgett J E, Paultre P. Fragility curves of typical as-built highway bridges in eastern Canada[J]. Engineering Structures, 2012, 40(16): 107-118.
[16]  Specifications for Highway Bridges: Part V. Seismic Design[S]. Tokyo: Japan Road Association, 2002.
[17]  JIG/T B02-01-2008公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008. JTG/T B02-01-2008 Guidelines of Seismic Design of Highway Bridges[S]. Beijing: China Communication Press, 2008.(In Chinese)
[18]  Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Atlanta, GA:Georgia Institute of Technology, 2005.
[19]  Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering-ASCE, 2002, 128(4): 526-533.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133