全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内芯板件局部屈曲幅值对耗能型防屈曲支撑滞回性能的影响

DOI: 10.13197/j.eeev.2014.04.168.zhaojx.022, PP. 168-175

Keywords: 防屈曲支撑,局部屈曲,屈曲半波长,屈曲幅值,整体屈曲

Full-Text   Cite this paper   Add to My Lib

Abstract:

耗能型防屈曲支撑的局部稳定性是此类支撑设计的一个关键问题,然而以往研究只针对约束构件给出了相关设计方法,而并没有针对支撑内芯给出相关设计要求。基于此,本文对5根全角钢防屈曲支撑进行了轴向加载低周往复试验,试件关键参数包括内芯板件的宽厚比以及内芯与约束构件之间的间隙。试验结果表明,当内芯板件宽厚比为8.5时,滞回曲线在1.4%的支撑轴向应变循环下出现明显的强度和刚度退化特征;内芯板件屈曲幅值与屈曲半波长的比值(屈曲幅值比)是影响耗能型防屈曲支撑的一个关键参数,分析表明,为确保饱满稳定的滞回性能,该比值不宜大于0.04;内芯板件局部屈曲后与约束构件所产生的接触作用限制了内芯整体构件高阶屈曲模态的发生。最后,针对角钢内芯板件与H型钢和焊接十字形内芯板件的相似性,对采用其余内芯构造形式的防屈曲支撑局部稳定性设计也给出了相关设计参考。

References

[1]  Zhao J X, Wu B,Ou J P. Effect of brace end rotation on the global buckling behavior of pin-connected buckling-restrained braces with end collars [J]. Engineering Structures, 2012, 40 (7): 240-253.
[2]  Zhao J X, Wu B,Ou J P. Flexural demand on pin-connected buckling-restrained braces and design recommendations [J]. Journal of Structural Engineering, ASCE, 2012, 138 (11): 1398-1415.
[3]  Zhao J X, Wu B,Ou J P. Global stability design method of buckling-restrained braces considering end bending moment transfer: Discussion on pinned connections with collars[J]. Engineering Structures, 2013, 49(4): 947-962.
[4]  Zhao J X, Wu B,Ou J P. A practical and unified global stability design method of buckling-restrained braces: Discussion on pinned connections[J]. Journal of Constructional Steel Research, 2014, 95(4): 106-115.
[5]  赵俊贤,全钢防屈曲支撑的抗震性能及稳定性设计方法[D]. 哈尔滨: 哈尔滨工业大学, 2012. ZHAO Junxian. Seismic behavior and stability design methods of all-steel buckling-restrained braces[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
[6]  Zhao J X, Wu B, Li W, et al. Local buckling behavior of steel angle core members in buckling-restrained braces: Cyclic tests, theoretical analysis, and design recommendations[J]. Engineering Structures. 2014, 66(5): 129-145.
[7]  Takeuchi T,Hajjar J F, Matsui R, Nishimoto K, Aiken ID. Effect of local buckling core plate restraint in buckling restrained braces[J]. Engineering Structures, 2012, 44(11): 304-311.
[8]  Chou C C, Chen S Y.Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces[J]. Engineering Structures 2010, 32 (8): 2108-2121.
[9]  Matsui R, Takeuchi T. Cumulative deformation capacity of buckling restrained braces taking local buckling of core plates into account[C]// 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
[10]  Wang C L,Usami T, Funayama J. Improving low-cycle fatigue performance of high-performance buckling-restrained braces by toe-finished method[J]. Journal of Earthquake Engineering, 2012, 16 (8): 1248-1268.
[11]  赵俊贤, 吴 斌, 欧进萍. 新型全钢防屈曲支撑的拟静力滞回性能试验[J]. 土木工程学报, 2011, 44(4): 60-70. ZHAO Junxian, WU Bin, OU Jinping. Uniaxial quasi-static cyclic tests on the hysteretic behavior of a novel type of all-steel buckling-restrained brace[J]. China Civil Engineering Journal, 2011, 44(4): 60-70. (in Chinese)
[12]  陈 骥. 钢结构稳定理论与设计[M]. 科学出版社, 2011. CHEN Ji. Stability of steel structures: theory and design[M]. Science Press, 2011. (in Chinese)
[13]  Zhao J X, Wu B,Ou J P. A novel type of angle steel buckling-restrained brace: Cyclic behavior and failure mechanism[J]. Earthquake Engineering and Structural Dynamics, 2011, 40 (10): 1083-1102.
[14]  Iwata M,Murai M. Buckling-restrained brace using steel mortar planks: performance evaluation as a hysteretic damper [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(14): 1807-1826.
[15]  Usami T, Ge HB, Kasai A. Overall buckling prevention condition of buckling-restrained braces as a structural control damper[C]// Proceeding of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133