全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

透射边界零频飘移失稳数值解增长模式解释

DOI: 10.13197/j.eeev.2014.04.15.xiezn.002, PP. 15-20

Keywords: 透射边界,零频失稳,波动数值模拟,群速度,GKS稳定性分析,人工边界条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

高阶透射边界能高效吸收入射至人工边界波动,但其引发的一类典型的数值失稳问题-零频飘移失稳仍未得到很好解决。已有的零频飘移失稳机理还不完善,如难以解释数值模拟中观测到的飘移失稳现象。这一局部失稳现象表现为失稳从人工边界节点开始,然后向计算区域内延拓;节点向一方向运动,而不再以其初始位置为中心振动。为此结合模态分析及Z变换,本文基于一维波动模型分析了飘移失稳机理及飘移失稳数值解增长模式与透射边界精度阶之间的关系。

References

[1]  Lee S J, Q Liu, J Tromp, et al. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes[J]. Journal of Asian Earth Sciences, 2014, 87: 56-68.
[2]  Chen Y W, Liu Y W, Chen B, Zhang P. A Cylindrical Higher-Order FDTD Algorithm With PML and Quasi-PML. Antennas and Propagation[J]. IEEE Transactions, 2013, 61(9): 4695-4704.
[3]  廖振鹏, 黄孔亮, 杨柏坡, 等. 暂态波透射边界[J]. 中国科学,A辑,1984, 27(6): 556-564. LIAO Zhenpeng, HUANG Kongliang, YANG Baipo, et al. A transmitting boundary for transient wave analyses[J]. Scientia Sinica (Series A), 1984, 27(6): 556-564.(in Chinese)
[4]  廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002. LIAO Zhenpeng. Introduction to wave motion theories in engineering[M]. 2nd ed. Beijing: Science Press, 2002 (in Chinese)
[5]  李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳[J]. 力学学报, 1996, 28(5): 627-632. LI Xiaojun, LIAO Zhenpeng. The drift instability of local transmitting boundary in time domain[J]. Acta Mechanica Sinica, 1996, 28(5): 627-632.(in Chinese)
[6]  Wagner R L, Chew W C. An analysis of Liao’s absorbing boundary condition[J]. Journal of Electromagnetic Waves and Applications, 1995, 9(7-8): 993-1009.
[7]  周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4): 550-554. ZHOU Zhenghua, LIAO Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula[J]. Acta Mechanica Sinica, 2001, 33(4): 550-554.(in Chinese)
[8]  Liao Z P, Zhou Z H and Zhang Y H. Stable implementation of transmitting boundary in numerical simulation of wave motion[J]. Chinese Journal of Geophysics, 2002, 45(4): 554-568.
[9]  Gustafsson B, Kreiss H O, Sundstrom A. Stability theory of difference approximations for initial boundary value problems II[J]. Mathematics of Computation, 1972, 26(119): 649-686.
[10]  Trefethen L N. Group velocity interpretation of the stability theory of Gustafsson Kreiss and Sundstrom[J]. Journal of Computational Physics, 1983, 49(2): 199-217.
[11]  Godunov S, Ryabenkii V. Spectral stability criteria for boundary value problems for non-self-adjoint difference equations[J]. Russian Mathematical Surveys, 1963, 18(3): 1-12.
[12]  郑君里. 信号与系统[M]. 北京:高等教育出版社, 2004. ZHENG Junli. Signals and systems[M]. Beijing: Higher Education Press, 2004. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133