全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大型复杂结构非线性随机地震反应分析与倒塌全过程模拟

DOI: 10.13197/j.eeev.2014.04.48.lij.007, PP. 48-56

Keywords: 复杂结构,随机地震动,非线性地震反应,倒塌,概率密度演化理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

工程结构在强地震动作用下的非线性随机反应与倒塌全过程模拟,是合理进行复杂结构抗震可靠性设计的基础。近年来在随机地震动物理模型、工程材料多维本构关系与结构的非线性分析理论、复杂结构非线性随机动力学等方面取得的重要进展,使得大型复杂结构的非线性随机地震反应分析与倒塌全过程模拟成为可能。本文概略介绍了上述研究进展,指出了需要进一步深入研究的问题。

References

[1]  Housner G W. Characteristics of strong-motion earthquakes[J]. Bull Seismol Society Am, 1947, 37: 19-27.
[2]  吕西林. 复杂高层建筑结构抗震理论与应用[M]. 北京: 科学出版社, 2007. LU Xilin. Seismic resistance theory and applications for complex high-rise building structures[M]. Beijing: Science Press, 2007.(in Chinese)
[3]  Wu JY, Li J, Faria R. An energy release rate-based plastic-damage model for concrete[J]. International Journal of Solids and Structures, 2006, 43: 583-612.
[4]  Li J, Ren XD. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of S olids and Structures, 2009, 46(11-12):2407-2419.
[5]  李杰, 任晓丹. 混凝土随机损伤力学研究进展[J]. 建筑结构学报, 2014, 35(4): 20-29. LI Jie, REN Xiaodan. Recent development on stochastic damage mechanics for concrete[J]. Journal of Building Structures, 2014,35(4),20-29.(in Chinese)
[6]  Nayfeh AH, Mook DT. Nonlinear oscillations[M]. New York: John Wiley & Sons, Inc., 1995.
[7]  Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake[C]// Proc Second World Conf. on Earthq. Eng. Tokyo, Japan, Vol.11, July, 1960, page. 781-797.
[8]  胡聿贤. 地震工程学[M]. 北京: 地震出版社, 1988. HU Yuxian. Earthquake engineering[M]. Beijing: Seismology Press, 1988.(in Chinese)
[9]  欧进萍, 牛荻涛, 杜修力. 设计用随机地震动的模型及其参数确定[J]. 地震工程与工程振动, 1991, 11(3): 45-54. OU Jinping, NIU Ditao, DU Xiuli. Random earthquake ground motion model and its parameter determination used in aseismic design[J]. Earthquake Engineering and Engineering Vibration, 1991, 11(3): 45-54.(in Chinese)
[10]  Loh CH, Yeh YT. Spatial variation and stochastic modeling of seismic differential ground movement[J]. Earthquake Engineering and Structural Dynamics, 1988, 16: 583-596.
[11]  刘恢先主编. 唐山大地震震害[M]. 北京: 科学出版社, 1986. LIU HX(Ed). Earthquake Damage in Tanshan Great Earthquake[M]. Beijing: Science Press, 1986.(in Chinese)
[12]  胡聿贤, 周锡元. 地震力统计理论的评介[R]. 刘恢先主编, 地震工程研究报告集(第一集), pp.21-32. 北京: 科学出版社, 1962. HU Yuxian, ZHOU Xiyuan. A review on statistical theory for seismic forces[R]. Liu HX (ed.), Collected Research Reports on Earthquake Engineering, pp.21-32. Beijing, Science Press, 1962.(in Chinese)
[13]  Newmark NM. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, 1959, 85(EM3): 67-94.
[14]  李 杰, 李国强. 地震工程学导论[M]. 北京: 地震出版社, 1992. LI Jie, LI Guoqiang. Introduction to earthquake fngineering[M]. Beijing: Seismology Press, 1992.(in Chinese)
[15]  Clough R, Penzien J. Dynamics of Structures[M]. New York: McGraw-Hill Inc, 1993.
[16]  李 杰, 吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京: 科学出版社, 2014. LI Jie, WU Jianying, CHEN Jianbing. Stochastic damage mechanics of concrete structures[M]. Beijing: Science Press, 2014.(in Chinese)
[17]  Wriggers P. Nonlinear Finite Element Methods[M]. Berlin: Springer-Verlag, 2008.
[18]  李 杰. 随机结构系统―分析与建模[M]. 北京: 科学出版社, 1996. LI Jie. Stochastic structural system: Analysis and modeling[M]. Beijing: Science Press, 1996. (in Chinese)
[19]  陈建兵, 李 杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学, 2014, 31(4): 1-10. CHEN Jianbing, LI Jie. Probability density evolution method for stochastic seismic response and reliability of structures[J]. Engineering Mechanics, 2014, 31(4): 1-10.(in Chinese)
[20]  Chen JB, Li J. Stochastic seismic response analysis of structures exhibiting high nonlinearity[J]. Computers and Structures, 2010, 88(7-8): 395-412.
[21]  朱位秋. 随机振动[M]. 北京: 科学出版社, 1992. ZHU Weiqiu. Random vibration[M]. Beijing: Science Press, 1992.(in Chinese)
[22]  Lutes LD, Sarkani S. Random Vibrations: Analysis of Structural and Mechanical Systems[M]. Elsevier, Amsterdam, 2004.
[23]  Ghanem R, Spanos PD. Stochastic finite elements: a spectral approach[M]. Berlin: Springer-Verlag, 1991
[24]  Wu CL, Ma XP, Fang T. A complementary note on Gegenbauer polynomial approximation for random response problem of stochastic structures[J]. Probabilistic Engineering Mechanics, 2006, 21, 410-419.
[25]  Schu?ller GI (Ed.). A state-of-the-art report on computational stochastic mechanics[J]. Probabilistic Engineering Mechanics, 1997, 12(4): 197-321.
[26]  Goller B, Pradlwarter H J, Schu?ller G I. Reliability assessment in structural dynamics[J]. Journal of Sound and Vibration, 2013, 332: 2488-2499.
[27]  Li J, Chen JB. Stochastic Dynamics of Structures[M]. John Wiley & Sons, 2009.
[28]  李 杰, 陈建兵. 随机动力系统中的概率密度演化方程及其研究进展[J]. 力学进展, 2010, 40(2): 170-188. LI Jie, CHEN Jianbing. Advances in the research on probability density evolution equations of stochastic dynamical systems[J]. Advances in Mechanics, 2010, 40(2): 170-188.(in Chinese)
[29]  Li J, Chen J, Sun W, Peng Y. Advances of the probability density evolution method for nonlinear stochastic systems[J]. Probabilistic Engineering Mechanics, 2012, 28: 132-142.
[30]  Kanai K. Semi-empirical formula for the seismic characteristics of the ground[J]. Bull. Earthquake Research Institute, University of Tokyo, 1957, 35: 309-325.
[31]  Amin M, Ang A H-S. Nonstationary stochastic model of earthquake motions[J]. Journal of Engineering Mechanics Division, ASCE, 1968, 94(EM2): 559-583.
[32]  Yeh C.-H. and Wen Y.K. Modeling of nonstationary ground motion and analysis of inelastic structural response[J]. Structural Safety, 1990, 8: 281-298.
[33]  李 杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26. LI Jie, AI Xiaoqiu. Study on the random model of seismic ground motion based on physical process[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 21-26.(in Chinese)
[34]  Wang D, Li J. Physical random function model of ground motions for engineering purposes[J]. Science China: Technological Sciences, 2011, 54(1): 175-182.
[35]  Wang D, Li J. A random physical model of seismic ground motion field on local engineering site[J]. Science China: Technological Sciences, 2012, 55(7): 2057-2065.
[36]  李 杰, 宋 萌. 随机地震动的概率密度演化[J]. 建筑科学与工程学报, 2013, 30(1): 13-18. LI Jie, SONG Meng. Probability density evolution of seismic ground motions[J]. Journal of Architecture Science and Engineering, 2013,30(1),13-18.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133