全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于延性需求的钢框架-中心支撑体系参数研究

DOI: 10.13197/j.eeev.2014.03.84.dongzq.012, PP. 84-94

Keywords: 钢框架-中心支撑体系,延性需求,抗震设计,重力二阶效应,场地效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

钢框架-中心支撑结构(SteelConcentricallyBracedFrame,简称CBF)是钢结构领域一种典型的双重抗侧力体系,由于该结构具有较大的初始抗侧刚度,支撑失效后框架部分仍能够提供强度和刚度,实际工程中得到了广泛应用。本文以单自由度钢框架-支撑体系为基础,定义了反映框架和支撑间刚度与强度比例关系的两个基本参数,按照我国现行抗震规范选取了20条不同场地的地震记录,基于延性运动方程对CBF体系进行了延性时程反应分析,建立了地震作用下单自由度CBF体系延性需求谱,分析过程中考虑了重力二阶效应和场地效应的影响。最终,依据结构延性能力和延性需求谱确定了基本参数的取值范围和CBF体系的临界周期,为此类结构的抗震设计提供重要参考。

References

[1]  Scholl R E. Observations of the performance of buildings during the 1985 Mexico earthquake, and structural design implications[J]. International Journal of Mining and Geological Engineering, 1989, 7(1): 69-99.
[2]  Kim H I,Goel S C. Upgrading of braced frames for potential local failures[J]. Journal of Structural Engineering, 1996, 122(5): 470-475.
[3]  Tremblay R, Filiatrault A, Timler P, et al. Performance of steel structures during the 1994 Northridge earthquake[J]. Canadian Journal of Civil Engineering, 1995, 22(2): 338-360.
[4]  Tremblay R, Filiatrault A, Bruneau M, et al. Seismic design of steel buildings: lessons from the 1995 Hyogo-ken Nanbu earthquake[J]. Canadian Journal of Civil Engineering, 1996, 23(3): 727-756.
[5]  童根树,米旭峰. 钢支撑设计方法对多层框架实际抗震性能的影响[J]. 工程力学, 2008, 25(6): 107-115. TONG Genshu, MI Xufeng. Aseismic behavior of multistory frames based on different braces design methods[J]. Engineering Mechanics, 2008, 25(6): 107-115.(in Chinese)
[6]  GB 50011-2010建筑抗震设计规范[S]. GB 50011-2010 Code for Seismic Design of Buildings[S].(in Chinese)
[7]  沙广?. K形中心支撑钢框架的结构影响系数[D]. 苏州: 苏州科技学院, 2007. SHA Guangjing. Structural influence factors of concentrically K-braced steel frames[D]. Suzhou: Suzhou University of Science and Technology, 2007.(in Chinese)
[8]  张文娟. 单斜杆中心支撑钢框架强度折减系数[D]. 苏州: 苏州科技学院, 2009. ZHANG Wenjuan. The seismic behaviour factors of single sway rod concertrically braced steel frames[D]. Suzhou: Suzhou University of Science and Technology, 2009.(in Chinese)
[9]  Hines E M,Appel M E,Cheever P J. Collapse performance of low-ductility chevron braced steel frames in moderate seismic regions[J]. Engineering Journal, 2009, 46(3): 149-180.
[10]  ASCE 7-10. Minimum design loads for buildings and other structures[S]. NY: American Society of Civil Engineers, New York, 2010.
[11]  顾 强. 钢结构滞回性能及抗震设计[M]. 北京: 中国建筑工业出版社, 2009. GU Qiang. Hysteretic behavior and aseismic design of steel structures[M]. Beijing: China Architecture & Building Press, 2009.(in Chinese)
[12]  罗桂发. 钢支撑和框架的弹塑性抗侧性能及其协同工作[D]. 杭州: 浙江大学, 2011. LUO Guifa. Elastic-plastic resistances of steel brace, momemt-resisting frame and their cooperation in dual system [D]. Hangzhou: Zhejiang University, 2011.(in Chinese)
[13]  于安麟. EK形, Y 形支撑的抗震性能试验研究[J]. 西安建筑科技大学学报:自然科学版, 1990, 22(3): 253-260. YU Anlin. An experimental sudy on the aseismic properties for EK-brace and Y-brace in steel constructions[J]. Journal of Xi’an University of Architecture & Technology:Natural Science Edition, 1990, 22(3): 253-260.(in Chinese)
[14]  Tremblay R. Inelastic seismic response of steel bracing members[J]. Jorunal of Structional Steel Research, 2002, 58(5): 665-701.
[15]  刘庆志. 钢支撑及少支撑框架结构抗震性能研究[D]. 北京: 清华大学, 2011. LIU Qingzhi. Study on seismic behavior of steel braces and rc frames with a small quantity of steel braces[D]. Beijing: Tsinghua University, 2011.(in Chinese)
[16]  李国强,陈素文. 从汶川地震灾害看钢结构在地震区的应用[J]. 建筑钢结构进展, 2008, 10(4): 1-7. LI Guoqiang, CHEN Suwen. From the damage by Wenchuan Earthquake to the application of steel building in seismic zone[J]. Progress in Steel Building Structures, 2008, 10(4): 1-7.(in Chinese)
[17]  Li G,Fahnestock L A. Seismic response of single-degree-of-freedom systems representing low-ductility steel concentrically-braced frames with reserve capacity[J]. Journal of Structural Engineering, 2013, 139(2): 199-211.
[18]  Bernal D. Amplification factors for inelastic dynamic p-Δ effects in earthquake analysis[J]. Earthquake Engineering and Structural Dynamics, 1987, 15(5): 635-651.
[19]  张伟莉,李 钢. 多层钢框架结构强度折减系数研究[J]. 建筑钢结构进展, 2013, 15(5): 21-28. ZHANG Weili, LI Gang. Analysis of strengh reduction factor for muti-story steel frame structures[J]. Progress in Steel Building Structures, 2013, 15(5): 21-28.(in Chinese)
[20]  PEER Strong Motion Database, http://peer.berkeley.edu/smcat/search.html [Z]. Pacific Earthquake Engineering Research Center.
[21]  Stoakes C,Fahnestock L. Cyclic flexural testing of concentrically braced frame beam-column connections[J]. Journal of Structural Engineering, 2011, 137(7): 739-747.
[22]  Adam C,J?ger C. Seismic collapse capacity of basic inelastic structures vulnerable to the P?delta effect[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(4): 775-793.
[23]  GB 50009-2012建筑结构荷载规范[S]. GB 50009-2012 Load Code for the Design of Building Structures[S].(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133