Chouhan R, Srivastava V. Global variation of b in the gutenberg richter’s relation LogN=a-bM with depth[J]. Pure and Applied Geophysics, 1970, 82(1): 124-132.
[2]
Joyner W B,Boore D M. Prediction of earthquake response spectra[M]. US Geological Survey, 1982.
[3]
Pacific Earthquake Engineering Research Center. PEER Strong Motion Database. University of California, Berkeley; 2014.
[4]
Liu Y, Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998, 95(6): 675-681.
[5]
Du Y, Clark L, Chan A. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147.
[6]
李超, 李宏男. 考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J]. 振动与冲击, 2014, 33(11): 70-77. LI Chao, LI Hongnan. Life-cycle seismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect[J]. Journal of Vibration and Shock, 2014, 33(11): 70-77.(in Chinese)
[7]
JTS 151-2011水运工程混凝土结构设计规范[S]. JTS 151-2011 Design Code for Concrete Structures of Port and Waterway Engineering[S].(in Chinese)
[8]
Qu Z. Predicting nonlinear response of an RC bridge pier subject to shake table motions[C]//Proc. 9th International Conference on Urban Earthquake Engineering (9CUEE), Tokyo, Japan. 1717-1724.
[9]
Glass G, Buenfeld N. On the current density required to protect steel in atmospherically exposed concrete structures[J]. Corrosion Science, 1995, 37(10): 1643-1646.
[10]
El Maaddawy T, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking[J]. Cement and Concrete Composites, 2007, 29(3): 168-175.
[11]
Zhang R, Castel A, Fran?ois R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process[J]. Cement and Concrete Research, 2010, 40(3): 415-425.
[12]
Stewart M G, Rosowsky D V. Structural safety and serviceability of concrete bridges subject to corrosion[J]. Journal of Infrastructure Systems, 1998, 4(4): 146-155.
[13]
Duracrete. Statistical quantification of the variables in the limit state functions[R]. The European Union, Brite EuRam 3, 2000.
[14]
Dutta A, Mander J B. Seismic fragility analysis of highway bridges[C]// Proceedings of the INCEDE-MCEER Center-to-Center Project Workshop on Earthquake Engineering Frontiers in Transportation Systems, 1998: 22-23.
[15]
Dutta A. On energy based seismic analysis and design of highway bridges[D]. State University of New York at Buffalo, 1999.
[16]
吴开统, 焦远碧, 吕培苓, 等. 地震序列概论[M]. 北京: 北京大学出版社, 1990(3): 166-183. WU Kaitong, JIAO Yuanbi, LV Peiling, et al. Introduction to earthquake sequence[M]. Beijing: Peking University Press, 1990(3). 166-183.(in Chinese)
[17]
周惠兰, 房桂荣, 章爱娣, 等. 地震震型判断方法探讨[J]. 地震工程学报, 1980(2): 45-59. ZHOU Huilan, FANG Guirong, ZHANG Aidi, et al. Discussion on the methods of earthquake type judgment[J]. China Earthquake Engineering Journal, 1980(2): 45-59.(in Chinese)
[18]
冯世平. 多次地震作用下的钢筋砼结构的动力反应[C]// 第三届全国地震工程学术会议论文集, 1990, 762-767. FENG Shiping. Dynamic response of RC structure under multi-earthquake[C]// Conference Proceedings of the Third China National Conference of Earthquake Engineering, 1990, 762-767.(in Chinese)
[19]
吴波, 欧进萍. 考虑余震影响的结构抗震设计实用方法[J]. 哈尔滨建筑工程学院学报, 1994, 27(4): 9-16. WU Bo, OU Jinping. A practical method for structural aseismic design taking account of the influence of aftershocks[J]. Journal of Harbin Architecture and Civil Engineering Institute, 1994, 27(4): 9-16.(in Chinese)
[20]
Ruiz-Garc A J,Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2): 621-634.
[21]
Lee K, Foutch D A. Performance evaluation of damaged steel frame buildings subjected to seismic loads[J]. Journal of Structural Engineering, 2004, 130(4): 588-599.
[22]
Gj?rv O E. Durability design of concrete structures in severe environments[M]. CRC Press, 2014.
[23]
梁爽. 海洋环境对混凝土结构影响的试验研究[D]. 南京: 南京理工大学, 2006. LIANG Shuang. Experimental studies on the influence of marine environment to concrete structure[D]. Nanjing University of Science and Technology, 2006.(in Chinese)
[24]
Mark A Ehlen, Anthony N kojundic. Life-365 service life prediction mode and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides[J]. Concrete International, 2014, 36(5): 41-71.
[25]
Hatzigeorgiou G D, Beskos D E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes[J]. Engineering Structures, 2009, 31(11): 2744-2755.
[26]
Gutenberg B,Richter C. Seismicity of the earth and associated phenomena[M]. Princeton University Press, 1954.