全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主余震下近海钢筋混凝土桥墩全寿命抗震分析

DOI: 10.13197/j.eeev.2015.04.145.chenxw.017, PP. 145-154

Keywords: 近海桥梁,主余震,氯离子腐蚀,地震易损性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国近海桥梁具有服役期长、工作环境恶劣并且面临较高的地震作用风险等特点。本文分析了全寿命周期内高性能混凝土中氯离子腐蚀作用,采用10组相同台站记录的实际主余震记录构造出新的主余震地震序列,利用增量动力分析(IDA)和地震易损性方法分析了主余震地震序列和氯离子腐蚀对桥墩抗震性能的影响。分析结果表明在轻微破坏状态下,服役时间和地震序列对桥墩地震易损性影响不大;在中等破坏、严重破坏和完全破坏状态下,服役时间和地震序列作用均对桥墩地震易损性有很大影响,桥墩更容易进入危险状态。

References

[1]  Chouhan R, Srivastava V. Global variation of b in the gutenberg richter’s relation LogN=a-bM with depth[J]. Pure and Applied Geophysics, 1970, 82(1): 124-132.
[2]  Joyner W B,Boore D M. Prediction of earthquake response spectra[M]. US Geological Survey, 1982.
[3]  Pacific Earthquake Engineering Research Center. PEER Strong Motion Database. University of California, Berkeley; 2014.
[4]  Liu Y, Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998, 95(6): 675-681.
[5]  Du Y, Clark L, Chan A. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147.
[6]  李超, 李宏男. 考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J]. 振动与冲击, 2014, 33(11): 70-77. LI Chao, LI Hongnan. Life-cycle seismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect[J]. Journal of Vibration and Shock, 2014, 33(11): 70-77.(in Chinese)
[7]  JTS 151-2011水运工程混凝土结构设计规范[S]. JTS 151-2011 Design Code for Concrete Structures of Port and Waterway Engineering[S].(in Chinese)
[8]  Qu Z. Predicting nonlinear response of an RC bridge pier subject to shake table motions[C]//Proc. 9th International Conference on Urban Earthquake Engineering (9CUEE), Tokyo, Japan. 1717-1724.
[9]  Glass G, Buenfeld N. On the current density required to protect steel in atmospherically exposed concrete structures[J]. Corrosion Science, 1995, 37(10): 1643-1646.
[10]  El Maaddawy T, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking[J]. Cement and Concrete Composites, 2007, 29(3): 168-175.
[11]  Zhang R, Castel A, Fran?ois R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process[J]. Cement and Concrete Research, 2010, 40(3): 415-425.
[12]  Stewart M G, Rosowsky D V. Structural safety and serviceability of concrete bridges subject to corrosion[J]. Journal of Infrastructure Systems, 1998, 4(4): 146-155.
[13]  Duracrete. Statistical quantification of the variables in the limit state functions[R]. The European Union, Brite EuRam 3, 2000.
[14]  Dutta A, Mander J B. Seismic fragility analysis of highway bridges[C]// Proceedings of the INCEDE-MCEER Center-to-Center Project Workshop on Earthquake Engineering Frontiers in Transportation Systems, 1998: 22-23.
[15]  Dutta A. On energy based seismic analysis and design of highway bridges[D]. State University of New York at Buffalo, 1999.
[16]  吴开统, 焦远碧, 吕培苓, 等. 地震序列概论[M]. 北京: 北京大学出版社, 1990(3): 166-183. WU Kaitong, JIAO Yuanbi, LV Peiling, et al. Introduction to earthquake sequence[M]. Beijing: Peking University Press, 1990(3). 166-183.(in Chinese)
[17]  周惠兰, 房桂荣, 章爱娣, 等. 地震震型判断方法探讨[J]. 地震工程学报, 1980(2): 45-59. ZHOU Huilan, FANG Guirong, ZHANG Aidi, et al. Discussion on the methods of earthquake type judgment[J]. China Earthquake Engineering Journal, 1980(2): 45-59.(in Chinese)
[18]  冯世平. 多次地震作用下的钢筋砼结构的动力反应[C]// 第三届全国地震工程学术会议论文集, 1990, 762-767. FENG Shiping. Dynamic response of RC structure under multi-earthquake[C]// Conference Proceedings of the Third China National Conference of Earthquake Engineering, 1990, 762-767.(in Chinese)
[19]  吴波, 欧进萍. 考虑余震影响的结构抗震设计实用方法[J]. 哈尔滨建筑工程学院学报, 1994, 27(4): 9-16. WU Bo, OU Jinping. A practical method for structural aseismic design taking account of the influence of aftershocks[J]. Journal of Harbin Architecture and Civil Engineering Institute, 1994, 27(4): 9-16.(in Chinese)
[20]  Ruiz-Garc A J,Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2): 621-634.
[21]  Lee K, Foutch D A. Performance evaluation of damaged steel frame buildings subjected to seismic loads[J]. Journal of Structural Engineering, 2004, 130(4): 588-599.
[22]  Gj?rv O E. Durability design of concrete structures in severe environments[M]. CRC Press, 2014.
[23]  梁爽. 海洋环境对混凝土结构影响的试验研究[D]. 南京: 南京理工大学, 2006. LIANG Shuang. Experimental studies on the influence of marine environment to concrete structure[D]. Nanjing University of Science and Technology, 2006.(in Chinese)
[24]  Mark A Ehlen, Anthony N kojundic. Life-365 service life prediction mode and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides[J]. Concrete International, 2014, 36(5): 41-71.
[25]  Hatzigeorgiou G D, Beskos D E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes[J]. Engineering Structures, 2009, 31(11): 2744-2755.
[26]  Gutenberg B,Richter C. Seismicity of the earth and associated phenomena[M]. Princeton University Press, 1954.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133