全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

张氏积分法在非线性动力分析中的应用

DOI: 10.13197/j.eeev.2015.04.112.zhangsy.013, PP. 112-120

Keywords: 结构相依,无条件稳定,外显式积分法,OpenSees,计算效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

一个理想的积分法希望同时具有内隐式积分法的无条件稳定与外显式积分法的计算简单的优点,张氏积分法即是为了此目的而发展出来的积分法,虽然已有完整的理论推导与简单的数值验证,但其在实务上的应用仍有待进一步的探究。为了验证张氏积分法的实用性与优异的计算效率,特别将张氏积分法加入OpenSees分析软件中,并针对各式各样不同类型的结构系统来进行动态历时分析。除了张氏积分法以外,也利用等平均加速度积分法与Newmark外显式积分法来进行动态历时分析,并经由分析结果的比较,除了可以验证张氏积分法的数值特性之外,也可以证实张氏积分法能广泛地应用于线性及非线性动力分析。最后则利用每次动力分析所使用的CPU时间比较,来进一步证实此积分法的优异计算效率。

References

[1]  Newmark N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85(7): 67-94.
[2]  Dahlquist G. A special stability problem for linear multistep methods[J]. BIT, 1963, 3: 27-43.
[3]  Chang S Y. Explicit pseudodynamic algorithm with unconditional stability[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(9): 935-947.
[4]  Chang S Y, Improved explicit method for structural dynamics[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(7): 748-760.
[5]  Chang S Y. An explicit method with improved stability property[J]. International Journal for Numerical Method in Engineering, 2009, 77(8): 1100-1120.
[6]  Chang S Y. A new family of explicit methods for linear structural dynamics[J]. Computers and Structures, 2010(1): 755-772.
[7]  Chang S Y. A family of non-iterative integration methods with desired numerical dissipation[J]. International Journal of Numerical Methods in Engineering, 2014, 100(1): 62-86.
[8]  Chang S Y. Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics[R]. Nonlinear Dynamics, available online.
[9]  McKenna F, Fenves G L, Scott M H. OpenSes: Open System for earthquake engineering simulation[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133