全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

显式分析方法在高层建筑弹塑性地震反应分析中的适用性研究

DOI: 10.13197/j.eeev.2015.04.85.duk.010, PP. 85-93

Keywords: 显式分析方法,高层建筑,弹塑性地震反应分析,计算精度,计算效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前隐式方法是动力弹塑性时程分析最常用的分析方法,然而隐式方法在强非线性分析中常常存在迭代不收敛的问题,并且刚度矩阵求解消耗的存储空间随结构自由度增加呈几何级数增长。因此,在求解高层建筑这种大规模问题中,极易遭遇计算瓶颈。显式分析方法直接求解解耦的方程组,不需要迭代。本文对隐式方法和显式方法进行了对比分析,研究了显式分析方法在高层建筑弹塑性地震反应分析中适用性。实例分析表明,从计算精度来讲,隐式方法和显式方法在稳定条件下都能得到较好的精度。从计算效率来讲,对于自由度较少的结构,隐式方法计算效率较高;对于自由度庞大的结构,显式方法计算效率较高。建议在进行自由度多的高层建筑弹塑性地震反应分析时,采用显式分析方法。

References

[1]  Freeman S A, Nicoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk-a case study of Puget Sound Naval Shipyard[R]. Bremerton, Washington, Proc.1st U.S. National Conf. Earthquake Engng. EERI, Berkeley, 1975: 113-122.
[2]  Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering & Structural Dynamics, 1996, 25(1): 31-46.
[3]  Chopra A K, Goel R K, Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands[J]. Earthquake Spectra, 2004, 20(3): 757-778.
[4]  Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561-582.
[5]  Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(8): 903-927.
[6]  Bellman RE, Casti J. Differential quadrature and long-term intergration[J]. Journal of Mathematical Analysis and Applications, 1971, 34(2): 235-238.
[7]  Bert C W, Malik M. Differential quadrature method in computational mechanics[J]. Applied Mechanics Reviews, 1996, 49(1): 1-28.
[8]  Fung T C. Solving initial value problems by differential quadraure method-Part 1: first-order equations[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1411-1427.
[9]  Fung TC. Solving initial value problems by differential quadraure method-Part 2: second-and higher-order equations[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1429-1454.
[10]  李鸿晶, 王通. 结构地震反应分析的逐步微分积分方法[J]. 力学学报, 2011, 43(2): 430-435. LI Hongjing, WANG Tong. A time-stepping method of seismic response analysis for structures using differential quadrature rule[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 430-435.(in Chinese)
[11]  Newmark N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85(3): 67-94.
[12]  Wilson E L, Farhoomand I, Bathe KJ. Nonlinear dynamic analysis of complex structures[J]. Earthquake Engineering and Structural Dynamics, 1972, 1(3): 241-252.
[13]  Hilber, H.M, Hughes, T.J.R and Talor, R.L. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering and Structural Dynamics, 1977, 5(3): 282-292.
[14]  李志山, 容柏生. 高层建筑结构在罕遇地震影响下的弹塑性时程分析研究[J]. 建筑结构, 2006, 36(S1): 201-208. LI Zhishan, RONG Baisheng. Research on elastic-plastic time-history analysis of tall building under expected rare earthquakes[J]. Building Structure, 2006, 36(S1): 201-208.(in Chinese)
[15]  黄忠海, 廖耘, 李盛勇, 等. 广州珠江新城东塔罕遇地震作用弹塑性分析[J]. 建筑结构学报, 2012, 33(11): 82-90. HUANG Zhonghai, LIAO Yun, LI Shengyong, et al. Elasto-plastic time-history analysis of the Guangzhou East Tower under rare earthquakes[J]. Journal of Building Structures, 2012, 33(11): 82-90.(in Chinese)
[16]  Mazzoni S, McKenna F, Scott MH, et al. Open system for earthquake engineering simulation user command-language manual[Z]. http://opensees.berkeley.edu, 2006.
[17]  PEER. Concrete Column Blind Prediction Contest 2010[Z]. http://nisee2.berkeley.edu/peer/prediction_contest/.2010-9-20.
[18]  杜轲, 孙景江, 刘琛. 基于力插值的非线性梁柱单元中固定端部求积节点的积分方法[J]. 工程力学, 2013, 30(9): 22-27. DU Ke, Sun Jingjiang, LIU Chen. Integration methods fixed integration point at the end for force-based beam-column elements[J]. Engineering Mechanics, 2013, 30(9): 22-27.(in Chinese)
[19]  Kaba S, Mahin S A. Refined modeling of reinforced concrete columns for seismic analysis[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1984.
[20]  Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal Proceedings, 1982, 79(1): 13-27.
[21]  Menegotto M., Pinto P. E. Method of Analysis for Cyclically Loaded R.C. Plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]// Lisbon: International Association for Bridge and Structural Engineering, 1973.
[22]  杜轲,孙景江,刘琛,等. 剪力墙非线性分析单元MFBFE的理论及开发[J]. 工程力学, 2014, 31(7): 137-145. DU Ke, SUN Jingjiang, LIU Chen, et al. Theory and program implementation of MFBFE element for nonlinear analysis of R/C shear wall[J]. Engineering Mechanics, 2014, 31(7): 137-145.(in Chinese)
[23]  杜轲,孙景江,丁宝荣,等. 基于MFBFE 剪力墙单元研究及低周反复试验数值分析[J]. 土木工程学报, 2014, 47(1): 1-12. DU Ke, SUN Jingjiang, DING Baorong, et al. Numerical analysis for low cyclic loading test of shear wall based on MFBFE shear wall element[J].China Civil Engineering Journal, 2014, 47(1): 1-12.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133