全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不均匀脆性材料动强度提高机理及破坏形态研究

DOI: 10.13197/j.eeev.2015.03.111.dangfn.014, PP. 111-118

Keywords: 脆性材料,破坏形态,裂纹扩展,最小耗能原理,能量释放率相关原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

论文通过理论分析指出,材料的动强度较静强度是否有提高,提高幅度有多大,以及静动强度差异的根源与材料的类型、加载速率以及不均匀程度有关,不能撇开具体情况来讨论材料的静动强度的关系。重点研究了岩石、混凝土类不均匀脆性材料的静动强度差异及机理,指出其动强度较静强度有一定的提高,静、动强度的差异与其破坏时裂纹的发展路径有关。静态破坏时裂纹沿着材料的薄弱面向前发展,即静态裂纹开裂遵循最小耗能原理;而动态破坏时,材料内部的应变能需要在瞬间得到释放,裂纹沿着能量释放最短路径向前发展,这时的裂纹穿过了材料的部分高强度区,使得材料的动强度高于静强度,即动态裂纹开裂遵循能量释放率相关原理。动强度提高的根源是由于材料的不均匀性和惯性力造成的。对于岩石、混凝土类不均匀脆性材料而言,其动强度也不是一个定值,而是随加载速率而变化。加载速率越大,裂纹穿过高强度区的能力越强,材料的强度越高。加载速率较低时动强度提高幅值主要受裂纹穿越材料高强度区的面积影响;加载速率超过某个临界值时,动强度提高幅值就只受到惯性项的影响。论文给出了岩石、混凝土类不均匀脆性材料动强度的具体表达式。并通过特殊设计的不均匀脆性材料的数值试验和物理试验验证了以上理论研究的正确性。

References

[1]  EIBL J,CURBACH M. An attempt to explain strength increase due to high loading rates[J]. Nuclear Engineering and Design, 1989, 112: 45-50.
[2]  ROSSI P. A physical phenomenon which can explain mechanical behavior of concrete under high strain rates[J]. Material and Structures, 1991(24): 422-424.
[3]  SWAN G,COOK J,BRUCE S,et al. Strain rate effect in Kimmeridge Bay Shale[J]. Int J Rock Mech Min Sci, 1989, 26(2): 135-149.
[4]  李海波,赵 坚,李廷芥. 滑移型裂纹模型在研究岩石动态单轴抗压强度中的应用[J]. 岩石力学与工程学报, 2001, 20(3): 315-319. LI Haibo,ZHAO Jian,LI Tingjie. Study of dynamic uniaxial compressive strength of rock material using sliding crack model[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(3): 315-319.(in Chinese)
[5]  RAVICHANDRAN G,SUBHASH G. A micromechanical model for high strain rate behavior of ceramic[J]. Int. J. Solids Structures, 1995, 32(17/18): 2627-2646.
[6]  WEERHEIJM J. Concrete under impact tensile loading and lateral compression[D]. Delft: Delft University of Technology, 1992.
[7]  ROSSI P. Influence of cracking in the presence of free water on the mechanical behaviors of concrete[J]. Magazine of Concrete Research, 1991,43(154):53-57.
[8]  周继凯. 高拱坝全级配混凝土动态弯拉力学特性试验与机理研究[D]. 南京:河海大学, 2007. ZHOU Jikai. Experiment and mechanism study on dynamic flexural-tensile mechanicalbehavior of fully-graded concrete for high arc dam[D]. Nanjing: Hohai University, 2007.(in Chinese)
[9]  李庆斌,郑 丹. 混凝土动力强度提高的机理探讨[J]. 工程力学, 2005, 22(s): 188-193. LI Qingbin,ZHENG Dan. Micro-mechanism on the enhancement of dynamic strength for concrete[J]. Engineering Mechanics, 2005, 22(s): 188-193.(in Chinese)
[10]  马怀发,陈厚群. 全级配大坝混凝土动态损伤破坏机理研究及其细观力学分析方法[M]. 北京: 中国水利水电出版社, 2008. MA Huaifa,CHEN Houqun. Research on dynamic damage failure mechanism and analyze micromechanics method of full-graded aggregate concrete[M]. Beijing: China Water Power Press, 2008.(in Chinese)
[11]  田 威,党发宁,陈厚群. 动力荷载作用下混凝土破裂特征的CT试验研究[J]. 地震工程与工程振动, 2011, 31(1): 30-34. TIAN Wei,DANG Faning,CHEN Houqun. CT experimental study on failure characteristics of concrete under dynamic loading[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(1): 30-34.(in Chinese)
[12]  雷光宇,党发宁,陈厚群. 冲击荷载作用下混凝土破坏强度的确定及CT验证[J]. 地震工程与工程振动, 2013, 33(3): 162-168. LEI Guangyu,DANG Faning,CHEN Houqun. Determination of breaking strength of concrete under impact load and CT experiment verification[J]. Earthquake Engineering and Engineering Dynamics, 2013, 33(3): 162-168.(in Chinese)
[13]  孙训方,方孝淑,关来泰. 材料力学[M]. 北京: 高等教育出版社, 2002. SUN Xunfang,FANG Xiaoshu,GUAN Laitai. Mechanics of materials[M]. Beijing: Higher Education Press, 2002.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133