全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模态转换的降阶模型在风与膜结构耦合分析的应用研究

DOI: 10.13197/j.eeev.2015.01.199.sunfj.024, PP. 199-205

Keywords: 降阶模型,模态转换,膜结构,风致振动,流固耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的不变流行降阶技术通过增加状态空间的方式将外荷载看成是附加状态,这种方法只适用于非线性较弱的结构。考虑到膜结构的较强非线性的特点,本文基于中心流形理论,通过模态转换的方式对风和膜结构形成的耦合体系进行降阶处理,将膜结构的模态分为主模态和次模态,将膜结构的风振状态表示为主模态的非线性函数,并将次模态表达为主模态的随时间变化的非线性函数,这里的不变流形依赖于主模态和风荷载,最后通过扩展不变流形方程获得体系的降阶模型。将该降阶模型用于计算膜结构的风振耦合响应,得到了膜结构风压系数、风振响应和功率谱等重要参数,结果与全阶模型计算结果符合良好。同时对比了本文降阶模型的计算效率,由此可见本文降阶模型耗费机时比全阶模型平均减少约55%,耦合迭代次数比全阶模型平均减少约60%。由此可见,基于模态转换的降阶模型适用于膜结构的风振耦合分析,且具有较高的准确性和计算效率。

References

[1]  Bathe KJ, Zhang H. Finite element developments for general fluid flows with structural interactions [J]. International Journal for Numerical Methods in Engineering,2004; 60(1):213-232.
[2]  Jér?me Breil, Stéphane Galera, Pierre-Henri Maire. Multi-material ALE computation in inertial confinement fusion code CHIC[J]. Computers & Fluids, 2011, 46(1): 161-167.
[3]  Marzouk Y, Xiu D. A stochastic collocation approach to Bayesian inference in inverse problems[J]. Communications in Computational Physics, 2009,6(4): 826-47.
[4]  Grigoriu M. Effective conductivity by stochastic reduced order models (sroms)[J]. Computational Materials Science, 2010,50:138-46.
[5]  Grigoriu M. Reduced order models for random functions. Application to stochastic problems[J]. Applied Mathematical Modelling, 2009,33:161-75.
[6]  Grigoriu M. Effective conductivity by stochastic reduced order models (sroms)[J]. Computational Materials Science, 2010,50:138-46.
[7]  Shaw S W, Pierre C. Modal analysis-based reduced-order models for nonlinear structures-An invariant manifold approach[J]. Shock Vib. Dig, 31(1):3-16.
[8]  Sinha S C, Redkar S. Order reduction of nonlinear time periodic systems using invariant manifolds[J]. J.Sound Vib., 2005, 284(3-5):985-1002.
[9]  Sinha S C, Redkar S. Macromodeling of nonlinear time periodic systems[J]. Commun. Nonlinear Sci. Number. Simul, 2006, 11(4):510-530.
[10]  王吉民. 薄膜结构的风振响应分析和风洞试验研究[D]. 杭州: 浙江大学博士学位论文, 2001. WANG Jimin. Wind-induced response analysis and wind tunnel experiment study on membrane structures[D]. Hangzhou: Zhejiang University doctoral thesis, 2001.
[11]  WU J C, YANG J N. Reduced-order H∞ and LQR control for wind-excited tall buildings[J].Engineering Structure,1998,20(3):222-236.
[12]  陈仁福.大跨度悬索桥理论[M].成都:西南交通大学出版社,1994. CHEN Renfu. Large-span suspension bridge theory[M].Chengdu: Southwest Jiaotong University, 1994.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133