Bathe KJ, Zhang H. Finite element developments for general fluid flows with structural interactions [J]. International Journal for Numerical Methods in Engineering,2004; 60(1):213-232.
Marzouk Y, Xiu D. A stochastic collocation approach to Bayesian inference in inverse problems[J]. Communications in Computational Physics, 2009,6(4): 826-47.
[4]
Grigoriu M. Effective conductivity by stochastic reduced order models (sroms)[J]. Computational Materials Science, 2010,50:138-46.
[5]
Grigoriu M. Reduced order models for random functions. Application to stochastic problems[J]. Applied Mathematical Modelling, 2009,33:161-75.
[6]
Grigoriu M. Effective conductivity by stochastic reduced order models (sroms)[J]. Computational Materials Science, 2010,50:138-46.
[7]
Shaw S W, Pierre C. Modal analysis-based reduced-order models for nonlinear structures-An invariant manifold approach[J]. Shock Vib. Dig, 31(1):3-16.
[8]
Sinha S C, Redkar S. Order reduction of nonlinear time periodic systems using invariant manifolds[J]. J.Sound Vib., 2005, 284(3-5):985-1002.
[9]
Sinha S C, Redkar S. Macromodeling of nonlinear time periodic systems[J]. Commun. Nonlinear Sci. Number. Simul, 2006, 11(4):510-530.
[10]
王吉民. 薄膜结构的风振响应分析和风洞试验研究[D]. 杭州: 浙江大学博士学位论文, 2001. WANG Jimin. Wind-induced response analysis and wind tunnel experiment study on membrane structures[D]. Hangzhou: Zhejiang University doctoral thesis, 2001.
[11]
WU J C, YANG J N. Reduced-order H∞ and LQR control for wind-excited tall buildings[J].Engineering Structure,1998,20(3):222-236.