Aquino MJ, Li Z, Shah SP. Mechanical properties of the aggregate and cement interface[J]. Advanced Cement Based Materials, 1995, 2(6): 211-223.
[2]
Guinea G V, El-Sayed K, Rocco C G, et al. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete[J]. Cement and Concrete Research, 2002, 32(12): 1961-1970.
[3]
Ollivier JP, Maso JC, Bourdette B. Interfacial transition zone in concrete[J]. Advanced Cement Based Materials, 1995, 2(1): 30-38.
[4]
Simeonov P, Ahamd S. Effect of transition zone on the elastic behavior of cement-based composites[J]. Cement and Concrete Research, 1995, 25(1): 165-176.
[5]
Nadeau JC. A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids[J]. Cement and Concrete Research, 2003, 33(1): 103-113.
[6]
Zhao XH, Chen WF. Effective elastic moduli of concrete with interface layer[J]. Computers and Structures, 1998, 66(2/3): 275-288.
[7]
Yang CC. Effect of the interfacial transition zone on the transport and the elastic properties of mortar[J]. Magazine of Concrete Research, 2003, 55(4): 305-312.
[8]
Lee KM, Park JH. A numerical model for elastic modulus of concrete considering interfacial transition zone[J]. Cement and Concrete Research, 2008, 38(3): 396-402.
[9]
Kim SM, Abu Al-Rub RK. Meso-scale computational modeling of the plastic-damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3): 339-358.
[10]
杜修力, 金 浏. 考虑过渡区界面影响的混凝土宏观力学性质研究[J]. 工程力学, 2012, 29(12): 72-79. DU Xiuli, JIN Liu. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete[J].Engineering Mechanics, 2012, 29(12): 72-79.(in Chinese)
[11]
杜修力, 金 浏. 混凝土静态力学性能的细观力学方法述评[J]. 力学进展, 2011, 41(4): 411-426. DU Xiuli, JIN Liu. A review on meso-mechanical method for studying the static-mechanical properties of concrete[J]. Advances in Mechanics, 2011, 41(4): 411-426.(in Chinese)
[12]
Nilsen AU, Monteiro PJM. Concrete: A three phase material[J]. Cement and Concrete Research, 1993, 23(11): 147-151.
[13]
Zhou XQ, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates[J]. Computers and Structures, 2008, 86(21/22): 2013-2026.
[14]
Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38: 162-170.
[15]
Du XL, Jin L, Ma GW. Numerical simulation of dynamic tensile failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66: 5-17.
[16]
金 浏, 杜修力. 加载速率及其突变对混凝土压缩破坏影响的数值研究[J]. 振动与冲击, 2014, 33(19): 187-193. JIN Liu, DU Xiuli. Effects of loading rate and its sudden change on concrete compressive failure[J]. 2014, 33(19): 187-193.(in Chinese)
[17]
Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structure[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[18]
Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J]. Cement and Concrete Research, 2011, 41(11): 1130-1142.
[19]
Pedersen R R, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement and Concrete Research, 2013, 50(1): 74-87.
[20]
O?bolt J, Sharma A. Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen[J]. Engineering Fracture Mechanics, 2012, 85(1): 88-102.
[21]
Chen X D, Wu S X, Zhou J K. Experimental and modeling study of dynamic mechanical properties of cement paste mortar and concrete[J]. Construction and Building Materials, 2013, 47: 419-430.