Finn W D L, Fujita N. Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, (22): 731-742.
[2]
Abdoun T, Dobry R. Centrifuge scaling laws of pile response to lateral spreading[J]. International Journal of Physical Modelling in Geotechnics, 2011, 11(1): 2-22.
[3]
Coelho Haigh S K, Madabhushi S P G. Centrifuge modeling of the effects of earthquake-induced liquefaction on bridge foundations[C]// 11th International Conference on Soil Dynamics and Earthquake Engineering, Berkeley, California January, 2004.
[4]
Takahashi A, Sugita H, Tanimoto S. Forces acting on bridge abutments over liquefied ground[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(3): 146-156.
[5]
Tobita T, Iai S, Sugaya M, et al. Analysis of group pile behavior under lateral spreading[C]// Part of Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, 2006: 294-305.
[6]
Bhattacharya S, Adhikari S, Alexander N A. A simplified method for unified buckling and free vibration analysis of pile-supported structures in seismically liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(8): 1220-1235.
[7]
Kutter B L, Gajan S, Manda K K, et al. Effects of layer thickness and density on settlement and lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 603-614.
[8]
Knappett J A, Madabhushi S P G. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1609-1618.
Ting J M. Full scale cyclic dynamic lateral pile response[J]. Journal of Geotechnical Engineering, 1987, 113(1): 30-45.
[11]
Ashford S A, Juirnarongrit T, Sugano T. Soil-pile response to blast-induced lateral spreading. I: field test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 152-162.
[12]
Weaver T J, Ashford S A, Rollins K M. Response of a 0.6-m CISS pile in liquefied soil under lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, (1): 94-102.
[13]
Rollins K M, Gerber T M, Lane J D, et al. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 115-125.
[14]
Mercado V M, Zeghal M, Abdoun T. Advanced site monitoring and characterization of site dynamic properties[C]// Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011: 1774-1784.
[15]
Wang S T, Vasquez L, Reese L C. Study of the behavior of pile groups in liquefied soils[C]// The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[16]
Shanker K, Basudhar P K, Patra N R. Buckling of piles under liquefied soil conditions[J]. Geotechnical and Geological Engineering, 2007, 25(3): 303-313.
[17]
Ashford S A, Juirnarongrit T. Push-over analyses of piles in laterally spreading soil[C]// Seismic Performance and Simulation of Pile Foundations, 2006: 109-120.
[18]
Juirnarongrit T, Ashford S A. Soil-pile response to blast-induced lateral spreading Ⅱ: analysis and assessment of the p-y method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 163-172.
[19]
Takahashi A, Sugita H, Tanimoto S. Beam on winkler foundation method for piles in laterally spreading soils[C]// Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, 2006: 230-241.
[20]
Brandenberg S J, Boulanger R W, Kutter B L, et al. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1055-1066.
[21]
郭 璇, 于威威. 液化滑移地层桩基础破坏机理分析[J]. 科学技术与工程, 2010, 10(3): 715-719. GUO Xuan, YU Weiwei. Analysis on damage mechanism of pile foundation in liquefaction layers[J]. Science Technology and Engineering, 2010, 10(3): 715-719.(in Chinese)
[22]
Kagawa T, Kraft L M. Seismic p-y responses of flexible piles[J]. Journal of the Geotechnical Engineering Division, 1980, 106(GT84): 899-918.
[23]
Liyanapathirana D S, Poulos H G. Pseudostatic approach for seismic analysis of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1480-1487.
[24]
O’Rourke T D, Meyersohn W D, Shiba Y, et al. Evaluation of pile response to liquefaction-induced lateral spread[C]// Proc. 5th U.S.-Japan Workshop: Earthq. Resistt Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, NCEER-94-0026, 1994: 457-479.
[25]
Koyamada K, Miyamoto Y J, Sako Y J, et al. Pile foundation response due to soil liquefaction-induced lateral spreading during the hyogo-ken nanbu earthquake of 1995[J]. J. Struct. Constr. Eng., AIJ, 1999, 521: 49-56.
[26]
Rajaparthy S R, Zhang Z, Hutchinson T C, et al. Plastic hinge formation in pile foundations due to liquefaction-induced loads[C]// Proceedings of the Geotechnical Earthquake Engineering and Soil Dynamics IV Congress, 2008.
[27]
Elgamal A, Lu J C, Yang Z H. A 3D soil-structure interaction computational framework[C]// 5th International Conference on Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, 2010.
[28]
Haldar S, Sivakumar Babu G L. Failure mechanisms of pile foundations in liquefiable soil: parametric study[J]. International Journal of Geomechanics, 2010, 10(2): 74-84.
[29]
Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles[J]. Computers and Geotechnics, 2002, 29(5): 363-386.
[30]
Mansour C, Steinberg A, Matasovic N. Analysis, design and construction of the supporting structure and wharf retrofit for a new shiploader at the port of long beach, california[C]// Proceedings of Ports Conference, 2004, 2: 1-9.
[31]
Papadimitriou A, Andrianopoulos K. Efficient numerical modeling of liquefaction-induced deformations of soil structures[C]// Geotechnical Earthquake and Engineering and Soil Dynamics IV Congress, 2008: 1-10.
[32]
Lin S S, Tseng Y J, Liao J C, et al. Ground lateral spread effects on single pile using uncoupled analysis method[J]. Journal of GeoEngineering, 2006, 1(2): 51-62.
[33]
Hadush S, Yashima A, Uzuoka R, et al. Liquefaction induced lateral spread analysis using the CIP method[J]. Computers and Geotechnics, 2001, 28(8): 549-574.
[34]
El Shamy U, Zeghal M, Dobry R, et al. Micromechanical aspects of liquefaction-induced lateral spreading[J]. International Journal of Geomechanics, 2010, 10(5): 190-201.
[35]
Shao Q, Tang X W, Bai X. Nonlinear numerical analysis of piles-soil interaction in lateral spreading of liquefied ground[C]// 2011 International Conference, 2011: 1434-1437.
[36]
黄 雨, 八?厚, 张 锋. 液化场地桩-土-结构动力相互作用的有限元分析[J]. 岩土工程学报, 2005, 27(6): 646-651. HUANG Yu, Yashima A, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651.(in Chinese)
[37]
胡春林, 杨小卫. 砂土液化场地桩基地震反应分析[J]. 振动与冲击, 2007, 26(2): 133-137. HU Chunlin, YANG Xiaowei. Analysis of seismic response on pile in liquefiable site[J]. Journal of Vibration and Shock, 2007, 26(2): 133-137.(in Chinese)
[38]
徐自国, 宋二祥. 刚性桩复合地基抗震性能的有限元分析[J]. 岩土力学, 2004, 25(2): 179-184. XU Ziguo, SONG Erxiang. Finite element analysis for seismic response of rigid pile composite foundations[J]. Rock and Soil Mechanics, 2004, 25(2): 179-184.(in Chinese)
[39]
张继宝. 液化场地群桩地震响应的三维数值分析[D]. 合肥工业大学学位论文, 2009. ZHANG Jibao. 3D numerical simulation of seismic responses of pile groups on liquefiable soils[D]. Hefei: Hefei University of Technology, 2009.(in Chinese)
[40]
邵 琪. 土液化横向流动中桩土相互作用三维数值分析[D]. 大连: 大连理工大学硕士学位论文, 2009. SHAO Qi. 3D nonlinear analysis of pile-soil interaction in lateral spreading of liquefied ground[D]. Dalian: Dalian University of Technology, 2009.(in Chinese)
[41]
Knappett J, Madabhushi S. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils[J]. J. Geotech. Geoenviron. Eng., 2008, 134(11): 1609-1618.
[42]
Ricardo D, Abdoun T, O’Rourke T D, et al. Single piles in lateral spreads: field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 879-889.
[43]
Rollins K M, Lane J D, Gerber T M. Measured and computed lateral response of a pile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 103-114.
[44]
Haskell J J M, Cubrinovski M, Bradley B A. Sensitivity analysis of simplified methods for the design of piles in laterally spreading soils[C]// Christchurch, New Zealand: 2009 NZSEE Conference, 3-5 Apr 2009.
[45]
Suzuki H, Tokimatsu K, Sato M, et al. Soil-pile-structure interaction in liquefiable ground through multi-dimensional shaking table tests using E-defense facility[C]// The 14th World Conference on Earthquake Engineering, China, 2008.
[46]
Taboada-Urtuzuástegui V M, Dobry R. Centrifuge modeling of earthquake-induced lateral spreading in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1195-1206.
[47]
张建民. 水平地基液化后大变形对桩基础的影响[J]. 建筑结构学报, 2001, 22(5): 75-77. ZHANG Jianmin. Effect of large horizontal post-liquefaction deformation of level ground on pile foundation[J]. Journal of Building Structures, 2001, 22(5): 75-78.(in Chinese)
[48]
唐 亮, 凌贤长, 苏 雷, 等. 可液化场地桩-土地震相互作用p-y曲线分析方法研究[J]. 世界地震工程, 2010, 26(S1): 109-113. TANG Liang, LING Xianzhang, Su Lei, et al. Study of p-y curve method for seismic pile-soil interaction in liquefying ground[J]. World Earthquake Engineering, 2010, 26(s1): 109-113.(in Chinese)
[49]
李雨润, 袁晓铭. 液化场地上土体侧向变形对桩基影响研究评述[J]. 世界地震工程, 2004, (2): 17-22. LI Yurun, YUAN Xiaoming. State-of-art of study on influences of liquefaction-induced soil spreading over pile foundation response[J]. World Earthquake Engineering, 2004, (2): 17-22.(in Chinese)
[50]
Ashour M, Norris G. Lateral loaded pile response in liquefiable soil[J] Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 404-414.
[51]
Assaf K, Rafael B, Sam F. Seismic soil-pile interaction in liquefiable soil[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 551-564.
[52]
Cubrinovski M, Ishihara K. Assessment of pile group response to lateral spreading by single pile analysis[C]// Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, 2006: 242-254.
[53]
陈云敏. 桩基动力学及其工程应用[C]// 第六届全国土动力学学术会议论文集. 北京: 中国建筑工业出版社, 2002, 60-66. CHEN Yunmin. Pile Dynamics and its engineering application[M]. The 6th National Conference on Soil Dynamics, 2002: 60-66.(in Chinese)
[54]
Zheng W, Luna R. Liquefaction effects on lateral pile behavior for bridges[J]. Foundation Analysis and Design: Innovative Methods, 2006: 264-270.
[55]
JRA. Specifications for Highway Bridges[S]. Japan Road Association, 1980.
[56]
AIJ. Recommendations for Design of Building Foundations[S]. Architectural Institute of Japan, 1988.
[57]
American Association of State Highway and Transportation Officials[S]. AASHTO, LRFD Bridge Design Specifications (4th Ed), Washington DC, 2007.
[58]
Uzuoka R, Yashima A, Kawakamic T, et al. Fluid dynamics based prediction of liquefaction induced lateral spreading[J]. Computers and Geotechnics, 1998, 22(3/4): 243-282.
[59]
Zhao C, Jeremic B. Numerical modeling and simulation of soil lateral spreading against piles[C]// International Foundation Congress and Equipment Expo, 2009: 183-189.
[60]
Alessandro P, Liam W, John W, et al. Lessons learnt from 2011 christchurch earthquakes: analysis and assessment of bridges[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44(4): 319-333.
[61]
Chang D W, Lin B S, Yeh C H, et al. FD solutions for static and dynamic winkler models with lateral spread induced earth pressures on piles[C]// Geotechnical Earthquake Engineering and Soil Dynamics IV, 2008.
[62]
景立平, 王绍博, 张荣祥. 砂土液化诱发的地面侧移机理研究[J]. 地震工程与工程振动, 1996, 16(3): 128-136. JING Liping, WANG Shaobo, ZHANG Rongxiang. Study on mechanism of ground lateral deformation induced by liquefaction[J]. Earthquake Engineering and Engineering Dynamics, 1996, 16(3): 128-136.(in Chinese)
[63]
高玉峰, 刘汉龙, 朱 伟. 地震液化引起的地面大位移研究进展[J]. 岩土力学, 2000, 21(3): 591-596. GAO Yufeng, LIU Hanlong, ZHU Wei. Advances in large ground displacement induced by seismic liquefaction[J]. Rock and Soil Mechanics, 1996, 16(3): 128-136.(in Chinese)
[64]
蔡晓光, 袁晓铭, 刘汉龙, 等. 近岸水平场地液化侧向大变形影响因素分析[J]. 世界地震工程, 2007, 23(2): 20-25. CAI Xiaoguang, YUAN Xiaoming, LIU Hanlong, et al. Influence factors on liquefaction-induced lateral spreading of ground near bank[J]. World Earthquake Engineering, 2007, 23(2): 20-25.(in Chinese)
[65]
Garini E. Single response to liquefaction-induced lateral spreading[D]. PhD dissertation, the State University of New York at Buffalo, 2005.
[66]
Mayoral J M, Flores F A, Romo M P. A simplified bumerical approach for lateral spreading evaluation[J]. Geofísica Internacional, 2009, 48(4): 391-405.
[67]
Rauch Alan F, Martin James R. EPOLLS model for predicting average displacements on lateral spreads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 360-371.
[68]
Wang J, Rahman M S. A neural network model for liquefaction-induced horizontal ground displacement[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(8): 555-568.
[69]
Miyajima M, Kitaura M, Ando K. Experiments on liquefaction-induced large ground deformation[R]. Proceedings of the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. Technical Report NCEER, New York, 1991, 1: 269-278.
[70]
Towhata I, Sasaki Y, Tokida K, et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principle[J]. Soils and Foundations, 1992, 32(3): 97-116.
[71]
Hamada M, Towhata I, Yasuda S, et al. Study on permanent ground displacements induced by seismic liquefaction[J]. Computers and Geotechnics, 1987, 4: 197-220.
[72]
Dungca J R, Kuwano J, Takahashi A. Shaking table tests on the lateral response of a pile buried in liquefied sand[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2-4): 287-295.
[73]
Liangcai He, Ahmed Elgamal, Tarek Abdoun, et al. Liquefaction-induced lateral load on pile in a medium dr sand layer[J]. Journal of Earthquake Engineering, 2009, 13(7): 916-938.
[74]
Motamed R, Towhata I. Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: shake table model tests[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 1043-1060.
[75]
Cubrinovski M, Uzuoka R, Sugita H. Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(6): 421-435.
[76]
Haeri S M, Kavand A, Rahmani I, et al. Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38(7): 25-45.
[77]
González L, Abdoun T, Dobry R. Effect of soil permeability on centrifuge modeling of pile response to lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 62-73.
[78]
Suzuki Y, Adachi N. Mechanism of subgrade reaction of model pile group in lateral spreading soil[J]. Journal of Structural and Construction Engineering, 2007, 586: 107-117.
[79]
陈文化, 门福录, 景立平. 有建筑物存在的饱和砂土地基液化振动台模拟实验研究[J]. 地震工程与工程振动, 1998, 18(4): 54-60. CHEN Wenhua, MEN Fulu, JING Liping. Shaking table test study of liquefaction of building subsoils[J]. Earthquake Engineering and Engineering Dynamics, 1998, 18(4): 54-60.(in Chinese)
[80]
孙利民, 张晨南, 潘 龙, 等. 桥梁桩土相互作用的集中质量模型及参数确定[J]. 同济大学学报, 2002, 30(4): 409-415SUN Limin, ZHANG Chennan, PAN Long, et al. Lumped-mass model and its parameters for dynamic analysis of bridge pier-pile-soil system[J]. Journal of Tongji University, 2002, 30(4): 409-415.(in Chinese)
[81]
王建华, 冯士伦. 液化土层中桩基水平承载特性分析[J]. 岩土力学, 2005, 26(10): 1597-1601. WANG Jianhua, FENG Shilun. Research on lateral resistance of pile foundation in liquefaction strata[J]. Rock and Soil Mechanics, 2005, 26(10): 1597-1601.(in Chinese)
[82]
袁晓铭, 李雨润, 孙 锐. 地面横向往返运动下可液化土层中桩基响应机理[J]. 土木工程学报. 2008, 41(9): 102-109. YUAN Xiaoming, LI Yurun, SUN Rui. Mechanism of pile foundation response in liquefiable soils under seismic cyclic ground motion[J]. China Civil Engineering Journal, 2008, 41(9): 102-109.(in Chinese)
[83]
Tang L, Zhang X, Ling X, et al. Response of a pile group behind quay wall to liquefaction-induced lateral spreading: a shake-table investigation[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4): 741-749.
[84]
Fiegel G L, Kutter B L. Liquefaction-induced lateral spreading of mildly sloping ground[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2236-2243.
[85]
Liu L, Dobry R. Effect of liquefaction on lateral response of piles by centrifuge model tests[R]. NCEER Report to be Submitted to FHWA, 1995.
[86]
McVay M, Zhang L, Molnit T, et al. Centrifuge testing of large laterally loaded pile groups in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(10): 1016-1026.
[87]
Singh P. Behavior of piles in earthquake-induced lateral spreading[D]. MS Thesis, University of California, Davis, 2002.
[88]
Brandenberg S J, Boulanger R W, Kutter B L, et al. Liquefaction-induced softening of load transfer between pile groups and laterally spreading crusts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 91-103.
[89]
Sharp M K, Dobry R, Phillips R. CPT-based evaluation of liquefaction and lateral spreading in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1334-1346.
[90]
Imamura S, Hagiwara T, Tsukamoto Y, et al. Response of pile groups against seismically induced lateral flow in centrifuge model test[J]. Soils and Foundations, 2004, 44(3): 39-55.
[91]
Haigh S K, Madabhushi S P G. Centrifuge modelling of lateral spreading past pile foundations[C]// International Conference on Physical Modelling in Geotechnics, St John’s, Newfoundland, Canada, 2002.
[92]
Ashour M, Ardalan H. Piles in fully liquefied soils with lateral spread[J]. Computers and Geotechnics, 2011, 38(6): 821-833.
[93]
刘惠珊. 桩基震害及原因分析―日本阪神大地震的启示[J]. 工程抗震, 1999, (1): 37-43. LIU Huishan. Pile foundations damage and cause analysis[J]. Earthquake Resistant Engineering, 1999, (1): 37-43.(in Chinese)
[94]
王 睿, 张建民, 张 嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学, 2011, 32(s1): 501-506. WANG Rui, ZHANG Jianmin, ZHAN Gg. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32(s1): 501-506.(in Chinese)
[95]
Varnes D J. Slope movement types and processes[R]. In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.). Transportation and Road Research Board, National Academy of Science, Washington D. C., 1978: 11-33.
[96]
Chung R M, Ballantyne D B, Comeau E, et al. January 17, 1995 Hyogoken-nanbu (Kobe) earthquake-performance of structure, lifelines, and fire protection systems[R]. NIST Special Publication 901, 1996.
[97]
Koyamada K, Miyamoto Y J, Sako Y J, et al. Pile foundation response due to soil liquefaction-induced lateral spreading during the hyogo-ken nanbu earthquake of 1995[J]. J. Struct. Constr. Eng., AIJ, 1999, (521): 49-56.
[98]
Berrill J B, Christensen S A, Keenan R P, et al. Case study of lateral spreading forces on a piled foundation[J]. Geotechnique, 2001, 51(6): 501-517.
[99]
Yen P W, Chen G D, Buckle I, et al. Bridge performance during the 2010 M8.8 chile earthquake[C]// Structures Congress, 2011: 1649-1659.
[100]
Youd T L, Hoose S N. Liquefaction during 1906 san francisco earthquake[J]. Journal of the Geotechnical Engineering Division, 1976, 102(GT5): 425-439.
[101]
Brandenberg S J, Boulanger R W, Kutter B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378-1391.
[102]
Dash S R, Bhattacharya S, Blakeborough A. Bending-buckling interaction as a failure mechanism of piles in liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(1-2): 32-39.